【題目】如圖,已知在平面直角坐標(biāo)系內(nèi),直線分別與軸、軸相交于點(diǎn)和點(diǎn),直線為過(guò)點(diǎn)的旋轉(zhuǎn)直線,交線段于點(diǎn),直線與軸的正半軸的夾角為.
(1)當(dāng)直線旋轉(zhuǎn)到與線段垂直時(shí),求的值;
(2)當(dāng)直線旋轉(zhuǎn)到過(guò)線段中點(diǎn)時(shí),求的值.
【答案】(1);(2)
【解析】
(1)分別求出點(diǎn)A和點(diǎn)B的坐標(biāo),從而得到OA,OB的長(zhǎng),再通過(guò)轉(zhuǎn)化思想,=,從而問(wèn)題得解;
(2)由AP=BP,∠AOB=90°,可得OP=PA,所以=,從問(wèn)題得解.
解:令x=0,則y=3,即OB=3,
令y=0,則x=4,即OA=4,
(1)∵直線旋轉(zhuǎn)到與線段垂直,
∴∠AOP+∠OAP=90°,
∵∠OBP+∠OAP=90°,
∴∠AOP=∠OBP
∴== =.
∴當(dāng)直線旋轉(zhuǎn)到與線段垂直時(shí)的值是.
(2)∵直線旋轉(zhuǎn)到過(guò)線段中點(diǎn),
∴OP=AP=BP.
∴∠AOP=∠BAO
∴== =.
∴當(dāng)直線旋轉(zhuǎn)到過(guò)線段中點(diǎn)時(shí)的值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的點(diǎn)和點(diǎn).過(guò)點(diǎn)作軸的垂線,垂足為點(diǎn),的面積為4.
(1)分別求出和的值;
(2)結(jié)合圖象直接寫(xiě)出的解集;
(3)在軸上取點(diǎn),使取得最大值時(shí),求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 拋物線與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會(huì)實(shí)踐活動(dòng)時(shí),想利用所學(xué)的解直角三角形的知識(shí)測(cè)量教學(xué)樓的高度,他們先在點(diǎn)D處用測(cè)角儀測(cè)得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點(diǎn)E處,在點(diǎn)E處測(cè)得樓頂M的仰角為45°,已知測(cè)角儀的高AD為1.5米,請(qǐng)根據(jù)他們的測(cè)量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一般捕魚(yú)船在A處發(fā)出求救信號(hào),位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無(wú)法直線到達(dá).救援艇決定馬上調(diào)整方向,先向北偏東方以每小時(shí)30海里的速度航行,同時(shí)捕魚(yú)船向正北低速航行.30分鐘后,捕魚(yú)船到達(dá)距離A處海里的D處,此時(shí)救援艇在C處測(cè)得D處在南偏東的方向上.
求C、D兩點(diǎn)的距離;
捕魚(yú)船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚(yú)船和救援艇同達(dá)時(shí)到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BD是AC邊上的高,點(diǎn)E在邊AB上,聯(lián)結(jié)CE交BD于點(diǎn)O,且,AF是∠BAC的平分線,交BC于點(diǎn)F,交DE于點(diǎn)G.
(1)求證:CE⊥AB.
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2—(m—1)x+m+2=0
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值;
(2)若Rt△ABC中,∠C=90°,tanA的值恰為(1)中方程的根,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過(guò)點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫(xiě)出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長(zhǎng)線上時(shí),猜想并寫(xiě)出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(教材呈現(xiàn))下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第78頁(yè)的部分內(nèi)容.
例1 求證:三角形的一條中位線與第三邊上的中線互相平分.
已知:如圖,在中,,,.
求證:、互相平分.
證明:連結(jié)、.
請(qǐng)根據(jù)教材提示,結(jié)合圖①,寫(xiě)出完整的解題過(guò)程.
(結(jié)論應(yīng)用)如圖②,連結(jié)圖①的、,分別與、、交于點(diǎn)、、.
(1)若,求點(diǎn)、之間的距離.
(2)若四邊形的面積為2,則的面積為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com