【題目】如圖,將30°的直角三角尺ABC繞直角頂點A逆時針旋轉(zhuǎn)到ADE的位置,使B點的對應(yīng)點D落在BC邊上,連接EB、EC,則下列結(jié)論:①∠DAC=∠DCA;②ED為AC的垂直平分線;③∠BED=30°;④ED=2AB.其中正確的是( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
【答案】B
【解析】分析:先利用旋轉(zhuǎn)的性質(zhì)得到AB=AC,AC=AE,∠BAC=∠EAC,則可判斷為等邊三角形,所以則再計算出于是可對①進行判斷;接著證明為等邊三角形得到 加上,則根據(jù)線段垂直平分線的判定方法可對②進行判斷;然后根據(jù)等邊三角形的性質(zhì)得DE平分∠AEC,則則可對③進行判斷;接下來證明 則利用含的直角三角形三邊的關(guān)系得到 所以 則可對④進行判斷.
詳解:在Rt△ABC中,∵∠ACB=
∴
∵△ABC繞直角頂點A逆時針旋轉(zhuǎn)到ADE的位置,
∴AB=AC,AC=AE,∠BAC=∠EAC,
∴△ABD為等邊三角形,
∴
∴
∵
∴
∴∠DAC=∠DCA,所以①正確;
∵
∴△AEC為等邊三角形,
∴EA=EC,
而DA=DC,
∴ED為AC的垂直平分線,所以②正確;
∴DE平分∠AEC,
∴
∴ 所以③錯誤;
∵,
在Rt△AED中,∵
∴ED=2AD,
∴ED=2AB,所以④正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長方形地面,觀察下列圖形,探究并解答問題:
(1)在第4個圖中,共有白色瓷磚______塊;在第個圖中,共有白色瓷磚_____塊;
(2)試用含的代數(shù)式表示在第個圖中共有瓷磚的塊數(shù);
(3)如果每塊黑瓷磚35元,每塊白瓷磚50元,當(dāng)時,求鋪設(shè)長方形地面共需花多少錢購買瓷磚?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中折線ABC表示從甲地向乙地打長途電話時所需付的電話費y(元)與通話時間t(分鐘)之間的關(guān)系圖象.
(1)從圖象知,通話2分鐘需付的電話費是 元;
(2)當(dāng)t≥3時求出該圖象的解析式(寫出求解過程);
(3)通話7分鐘需付的電話費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”.圖中點A表示﹣10,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距28個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话耄罅⒖袒謴?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運動的時間為t秒.問:
(1)動點P從點A運動至C點需要多少時間?
(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個數(shù)共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個圖案均由邊長相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個圖案中白色正方形比黑色正方形多________個.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)-3-7;
(2) ;
(3)-0.5+(-15.5)-(-17)-|-12|;
(4) ;
(5) ;
(6)(用簡便方法計算).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com