【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣2x+c(c為常數(shù))的對(duì)稱軸如圖所示,且拋物線過點(diǎn)C(0,c).
(1)當(dāng)c=﹣3時(shí),點(diǎn)(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;
(2)若拋物線與x軸有兩個(gè)交點(diǎn),自左向右分別為點(diǎn)A、B,且OA=OB,求拋物線的解析式;
(3)當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求c的取值范圍.
【答案】(1)-4(2)y=x2﹣2x+或y=x2﹣2x﹣8(3)當(dāng)﹣3<c<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn)
【解析】
(1)根據(jù)二次函數(shù)的性質(zhì),求出頂點(diǎn)的縱坐標(biāo)即可解決問題;
(2)分兩種情形①當(dāng)點(diǎn)A、B都在原點(diǎn)的右側(cè)時(shí),如解圖1,②當(dāng)點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)時(shí),如解圖2,分別求解即可;
(3)把問題轉(zhuǎn)化為不等式即可解決問題;
(1)當(dāng)c=﹣3時(shí),拋物線為y=x2﹣2x﹣3,
∴拋物線開口向上,有最小值,
∴y最小值= =﹣4,
∴y1的最小值為﹣4;
(2)拋物線與x軸有兩個(gè)交點(diǎn),
①當(dāng)點(diǎn)A、B都在原點(diǎn)的右側(cè)時(shí),如解圖1,
設(shè)A(m,0),
∵OA=OB,
∴B(2m,0),
∵二次函數(shù)y=x2﹣2x+c的對(duì)稱軸為x=1,
由拋物線的對(duì)稱性得1﹣m=2m﹣1,解得m=,
∴A(,0),
∵點(diǎn)A在拋物線y=x2﹣2x+c上,
∴0=﹣+c,解得c=,
此時(shí)拋物線的解析式為y=x2﹣2x+;
②當(dāng)點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)時(shí),如解圖2,
設(shè)A(﹣n,0),
∵OA=OB,且點(diǎn)A、B在原點(diǎn)的兩側(cè),
∴B(2n,0),
由拋物線的對(duì)稱性得n+1=2n﹣1,
解得n=2,
∴A(﹣2,0),
∵點(diǎn)A在拋物線y=x2﹣2x+c上,
∴0=4+4+c,解得c=﹣8,
此時(shí)拋物線的解析式為y=x2﹣2x﹣8,
綜上,拋物線的解析式為y=x2﹣2x+或y=x2﹣2x﹣8;
(3)∵拋物線y=x2﹣2x+c與x軸有公共點(diǎn),
∴對(duì)于方程x2﹣2x+c=0,判別式b2﹣4ac=4﹣4c≥0,
∴c≤1.
當(dāng)x=﹣1時(shí),y=3+c;當(dāng)x=0時(shí),y=c,
∵拋物線的對(duì)稱軸為x=1,且當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),
∴3+c>0且c<0,解得﹣3<c<0,
綜上,當(dāng)﹣3<c<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動(dòng),計(jì)劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.6倍,這樣可提前4年完成任務(wù).
(1)問實(shí)際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實(shí)際平均每年綠化面積至少還要增加多少萬平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過課本上對(duì)函數(shù)的學(xué)習(xí),我們積累了一定的經(jīng)驗(yàn),下表是一個(gè)函數(shù)的自變量與函數(shù)值的部分對(duì)應(yīng)值,請(qǐng)你借鑒以往學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),探究下列問題:
… | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | 6 | 3 | 2 | 1.5 | 1.2 | 1 | … |
(1)當(dāng) 時(shí),;
(2)根據(jù)表中數(shù)值描點(diǎn),并畫出函數(shù)圖象;
(3)觀察畫出的圖象,寫出這個(gè)函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知,,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),連接AP,作點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)M,連接MP,作的角平分線交邊CD于點(diǎn)N.則線段MN的最小值為_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017河北24題10分)如圖,直角坐標(biāo)系中,,直線與軸交于點(diǎn),直線與軸及直線分別交于點(diǎn),,點(diǎn),關(guān)于軸對(duì)稱,連接.
(1)求點(diǎn),的坐標(biāo)及直線的解析式;
(2)設(shè)面積的和,求的值;
(3)在求(2)中時(shí),嘉琪有個(gè)想法:“將沿軸翻折到的位置,而與四邊形拼接后可看成,這樣求便轉(zhuǎn)化為直接求的面積不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn),請(qǐng)通過計(jì)算解釋他的想法錯(cuò)在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L: (常數(shù)t>0)與x軸從左到右的交點(diǎn)為B,A,過線段OA的中點(diǎn)M作MP⊥x軸,交雙曲線于點(diǎn)P,且OA·MP=12.
(1)求k值;
(2)當(dāng)t=1時(shí),求AB長,并求直線MP與L對(duì)稱軸之間的距離;
(3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點(diǎn))記為G,用t表示圖象G最高點(diǎn)的坐標(biāo);
(4)設(shè)L與雙曲線有個(gè)交點(diǎn)的橫坐標(biāo)為x0,且滿足4≤x0≤6,通過L位置隨t變化的過程,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(5,3),點(diǎn)B(﹣3,3),過點(diǎn)A的直線y=x+m(m為常數(shù))與直線x=1交于點(diǎn)P,與x軸交于點(diǎn)C,直線BP與x軸交于點(diǎn)D.
(1)求點(diǎn)P的坐標(biāo);
(2)求直線BP的解析式,并直接寫出△PCD與△PAB的面積比;
(3)若反比例函數(shù)(k為常數(shù)且k≠0)的圖象與線段BD有公共點(diǎn)時(shí),請(qǐng)直接寫出k的最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)衢州市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,衢州市近5年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。
請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);
(2)2016年比2015年的國民生產(chǎn)總值增加了百分之幾(精確到1%)?
(3)若要使2018年的國民生產(chǎn)總值達(dá)到1573億元,求2016年至2018年我市國民生產(chǎn)總值平均年增長率(精確到1%)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com