【題目】如圖,已知A、B兩地相距4千米,上午11:00,甲從A地出發(fā)步行到B地,11:20乙從B地出發(fā)騎自行車(chē)到A地,甲乙兩人離A地的距離(千米)與甲所用時(shí)間(分)之間的關(guān)系如圖所示,由圖中的信息可知,乙到達(dá)A地的時(shí)間為( 。
A. 上午11:40 B. 上午11:35 C. 上午11:45 D. 上午11:50
【答案】A
【解析】
根據(jù)函數(shù)圖象,用待定系數(shù)法求出甲離A地的距離y與所用的時(shí)間x的函數(shù)關(guān)系式,從而求出甲離A地的距離與所用時(shí)間的函數(shù)圖象與乙離A地的距離與所用時(shí)間的函數(shù)圖象交點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法求出乙離A地的距離y與所用時(shí)間x的函數(shù)關(guān)系式,把y=0代入,即可求出乙從B地到達(dá)A地所用的時(shí)間,從而得到答案.
設(shè)甲離A地的距離y與所用的時(shí)間x的函數(shù)關(guān)系式為:y=kx,
把(60,4)代入得:60k=4,
解得:k=,
即設(shè)甲離A地的距離y與所用的時(shí)間x的函數(shù)關(guān)系式為:y=x,
把y=2代入y=x,得x=2,
解得:x=30,
即甲離A地的距離與所用時(shí)間的函數(shù)圖象與乙離A地的距離與所用時(shí)間的函數(shù)圖象交點(diǎn)為(30,2),
設(shè)乙離A地的距離y與所用時(shí)間x的函數(shù)關(guān)系式為:y=mx+n,
把(20,4)和(30,2)代入得:,
解得:,
即乙離A地的距離y與所用時(shí)間x的函數(shù)關(guān)系式為:y=-0.2x+8,
當(dāng)y=0時(shí),-0.2x+8=0,
解得:x=40,
即乙從B地到達(dá)A地所用的時(shí)間為:40-20=20(分鐘),
即乙到達(dá)A地的時(shí)間為:上午11:40,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=10,∠A=40°,點(diǎn)D為弧BC的中點(diǎn),點(diǎn)P是直徑AB上的一個(gè)動(dòng)點(diǎn),PC+PD的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△OAB在直角坐標(biāo)系中的位置如圖,點(diǎn)A在第一象限,點(diǎn)B在x軸正半軸上,OA=OB=6,∠AOB=30°.
(1)求點(diǎn)A、B的坐標(biāo);
(2)開(kāi)口向上的拋物線經(jīng)過(guò)原點(diǎn)O和點(diǎn)B,設(shè)其頂點(diǎn)為E,當(dāng)△OBE為等腰直角三角形時(shí),求拋物線的解析式;
(3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點(diǎn),已知MN=2 ,P(m,2)(m>0),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高節(jié)水意識(shí),小申隨機(jī)統(tǒng)計(jì)了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計(jì)圖.(單位:升)
(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,給小申家提出一條全理的節(jié)約用水建議,并估算采用你的建議后小申家一個(gè)月(按30天計(jì)算)的節(jié)約用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)R(1,0),點(diǎn)K(4,4),直線y=- x+b過(guò)點(diǎn)K , 分別交x軸、y軸于U、V兩點(diǎn),以點(diǎn)R為圓心, RK為半徑作⊙R , ⊙R交x軸于A.
(1)若二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B(-2,0)、C(0,-8),求二次函數(shù)的解析式;
(2)判斷直線UV與⊙R的位置關(guān)系,并說(shuō)明理由;
(3)若動(dòng)點(diǎn)P、Q同時(shí)從A點(diǎn)都以相同的速度分別沿AB、AC邊運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E , 使得以A、E、Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出E點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與拋物線交于點(diǎn)P,與直線BC交于點(diǎn)M,且PM= AB.
(1)求拋物線的解析式;
(2)點(diǎn)K是x軸正半軸上一點(diǎn),點(diǎn)A、P關(guān)于點(diǎn)K的對(duì)稱點(diǎn)分別為 、 ,連接 、 ,若 ,求點(diǎn)K的坐標(biāo);
(3)矩形ADEF的邊AF在x軸負(fù)半軸上,邊AD在第二象限,AD=2,DE=3.將矩形ADEF沿x軸正方向平移t(t>0)個(gè)單位,直線AD、EF分別交拋物線于G、H.問(wèn):是否存在實(shí)數(shù)t,使得以點(diǎn)D、F、G、H為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,山坡上有一顆樹(shù)AB,樹(shù)底部B點(diǎn)到山腳C點(diǎn)的距離BC為6 米,山坡的坡角為30°,小宇在山腳的平地F處測(cè)量這棵樹(shù)的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得樹(shù)頂部A的仰角為45°,樹(shù)底部B的仰角為20°,求樹(shù)AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為邊BC的中點(diǎn),過(guò)點(diǎn)A作射線AE,過(guò)點(diǎn)C作CF⊥AE于點(diǎn)F,過(guò)點(diǎn)B作BG⊥AE于點(diǎn)G,連接FD并延長(zhǎng),交BG于點(diǎn)H.
(1)求證:DF=DH;
(2)若∠CFD=120°,求證:△DHG為等邊三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com