【題目】如圖,在一條筆直的東西向海岸線l上有一長(zhǎng)為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測(cè)得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測(cè)得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時(shí)到達(dá)海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請(qǐng)說(shuō)明理由(參考數(shù)據(jù): ≈1.4, ≈1.7).
【答案】(1)11:00;(2)能,理由見(jiàn)解析.
【解析】試題分析:(1)延長(zhǎng)AB交海岸線l于點(diǎn)D,過(guò)點(diǎn)B作BE⊥海岸線l于點(diǎn)E,過(guò)點(diǎn)A作AF⊥l于F,易證△ABC是直角三角形,再證明∠BAC=30°,再求出BD的長(zhǎng)即可解決問(wèn)題.(2)在RT△BEC中,求出CD的長(zhǎng)度,和CN、CM比較即可解決問(wèn)題.
試題解析:(1)延長(zhǎng)AB交海岸線l于點(diǎn)D,過(guò)點(diǎn)B作BE⊥海岸線l于點(diǎn)E,過(guò)點(diǎn)A作AF⊥l于F,如圖所示.
∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,
∴∠ECB=30°,∠ACF=60°,
∴∠BCA=90°,
∵BC=12,AB=36×=24,
∴AB=2BC,
∴∠BAC=30°,∠ABC=60°,
∵∠ABC=∠BDC+∠BCD=60°,
∴∠BDC=∠BCD=30°,
∴BD=BC=12,
∴時(shí)間t==小時(shí)=20分鐘,
∴輪船照此速度與航向航向,上午11::00到達(dá)海岸線.
(2)∵BD=BC,BE⊥CD,
∴DE=EC,
在RT△BEC中,∵BC=12,∠BCE=30°,
∴BE=6,EC=6≈10.2,
∴CD=20.4,
∵20<20.4<21.5,
∴輪船不改變航向,輪船可以?吭诖a頭.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在AB延長(zhǎng)線上,連接AD.下列結(jié)論一定正確的是()
A. AD∥BC B. ∠CBE=∠C C. ∠ABD=∠E D. AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點(diǎn)Q從點(diǎn)A開(kāi)始沿AB邊以1 cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)P從點(diǎn)B開(kāi)始沿BC邊以2 cm/s的速度向點(diǎn)C移動(dòng),如果點(diǎn)Q,P分別從A,B兩點(diǎn)同時(shí)出發(fā),當(dāng)一動(dòng)點(diǎn)運(yùn)動(dòng)到終點(diǎn),另一動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)幾秒后,△PBQ的面積等于4 cm2?
(2)幾秒后,PQ的長(zhǎng)度等于2 cm?
(3)在(1)中,△PBQ的面積能否等于7 cm2?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測(cè)量被池塘隔開(kāi)的兩棵樹(shù)A,B之間的距離,他們?cè)O(shè)計(jì)了如圖所示的測(cè)量方案:從樹(shù)A沿著垂直于AB的方向走到點(diǎn)E處,再?gòu)狞c(diǎn)E沿著垂直于AE的方向走到點(diǎn)F處,C為AE上一點(diǎn),其中三位同學(xué)分別測(cè)得三組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB.其中能根據(jù)所測(cè)數(shù)據(jù)求得A,B兩樹(shù)之間的距離的有________組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為測(cè)量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測(cè)得坡長(zhǎng)AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB∥CD,點(diǎn)E、M分別為直線AB、CD上的點(diǎn),點(diǎn)N為兩平行線間的點(diǎn),連接NE、NM,過(guò)點(diǎn)N作NG平分∠ENM,交直線CD于點(diǎn)G,過(guò)點(diǎn)N作NF⊥NG,交直線CD于點(diǎn)F,若∠BEN=160°,則∠NGD﹣∠MNF=__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是( )
A. 2<AD<8B. 2<AD<4C. 1<AD<4D. 1<AD<8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人玩“石頭、剪子、布”游戲,他們?cè)诓煌该鞯拇又蟹湃诵螤、大小均相同?/span>18張卡片,其中寫(xiě)有“石頭”、“剪子”、“布”的卡片張數(shù)分別為5、6、7.兩人先后各隨機(jī)摸出一張卡片(先摸者不放回)來(lái)比勝負(fù),并約定:“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“石頭”,同種卡片不分勝負(fù).
(1)若甲先摸,則他摸出“剪子”的概率是多少?
(2)若甲先摸出了“剪子”,則乙獲勝的概率是多少?
(3)若甲先摸出了“布”,則甲獲勝的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com