【題目】因式分解:2m2n-8mn+8n.

【答案】2n(m-2)2

【解析

試題原式提取公因式后,利用完全平方公式分解即可.

試題解析:原式=2n(m2-4m+4)=2n(m-2)2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,PAB邊上任意一點(diǎn),AE⊥DPE,點(diǎn)FDP的延長(zhǎng)線上,且EF=DE,連接AF、BF,∠BAF的平分線交DFG,連接GC.

(1)求證:△AEG是等腰直角三角形;

(2)求證:AG+CG=DG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩圓的半徑分別為2cm和6cm,圓心距為4cm,則這兩圓的位置關(guān)系是(
A.內(nèi)含
B.內(nèi)切
C.外切
D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我區(qū)積極開(kāi)展“體育大課間”活動(dòng),引導(dǎo)學(xué)生堅(jiān)持體育鍛煉.某校根據(jù)實(shí)際情況,決定主要開(kāi)設(shè)A:乒乓球,B:籃球,C:跑步,D:足球四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題:

(1)求樣本中最喜歡B項(xiàng)目的人數(shù)百分比和其所在扇形圖中的圓心角的度數(shù);

(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)已知該校有1000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡足球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)圖象過(guò)點(diǎn)(﹣1,0),頂點(diǎn)為(1,2),則結(jié)論:

①abc>0;②x=1時(shí),函數(shù)最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.

其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù)1,1,1,3,4的平均數(shù)是;眾數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠α的余角是35°36′,則∠α的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=axm2+ny軸交于點(diǎn)A,它的頂點(diǎn)為點(diǎn)B,點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)分別為C、D.若A、B、C、D中任何三點(diǎn)都不在一直線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=x﹣2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=axm2+nm>0)的伴隨直線是y=x﹣3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=axm2+n的伴隨直線是y=2x+bb>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PBD是一個(gè)等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)(用含b的代數(shù)式表示);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=2x﹣1的圖象經(jīng)過(guò)點(diǎn)(a,3),則a=

查看答案和解析>>

同步練習(xí)冊(cè)答案