【題目】如圖,在邊長為a的正方形的一角剪去一個邊長為b的正方形,把剩余的部分(圖中的陰影部分)裁剪后拼成右邊的長方形.

1)請寫出上述剪拼過程中所揭示的乘法公式;

2)請運(yùn)用乘法公式簡便計(jì)算:201922020×2018

【答案】1a2b2=(a+b)(ab);(21

【解析】

1)分別在兩個圖形中表示出陰影部分的面積,繼而可得出公式;

2)由平方差公式:a2b2=(a+b)(ab)可求解.

解:(1)第一個圖中陰影部分的面積是:a2b2 ,第二個圖中的面積:aab+bab)=(a+b)(ab),

乘法公式:a2b2=(a+b)(ab).

2201922020×2018=20192﹣(2019+1)×(20191)=1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種密碼,將英文26個字舟a,b,c,z(不論大小寫)依次對應(yīng)1,2,326,這26個自然數(shù)(見表格),當(dāng)明碼對應(yīng)的序號x為奇數(shù)時,密碼對應(yīng)的序號,當(dāng)明碼對應(yīng)的序號x為偶數(shù)時,密碼對應(yīng)的序號+12,按下述規(guī)定,將明碼“l(fā)ove”譯成密碼是(

A.loveB.rkwuC.sdriD.rewj

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)M,N的坐標(biāo)分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點(diǎn),則a的取值范圍是( 。

A. a≤﹣1≤a< B. ≤a<

C. a≤a> D. a≤﹣1a≥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰OBC的邊OBx軸上,OBCB,OB邊上的高CAOC邊上的高BE相交于點(diǎn)D,連接OD,AB,∠CBO=45°,在直線BE上求點(diǎn)M,使BMCODC相似,則點(diǎn)M的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的媽媽在菜市場買回斤蘿卜、斤排骨,準(zhǔn)備做蘿卜排骨湯,下面是爸爸媽媽的對話:

媽媽:“上個月蘿卜的單價(jià)是元/斤,排骨的單價(jià)比蘿卜的倍還多元”;

爸爸:“今天,報(bào)紙上說與上個月相比,蘿卜的單價(jià)上漲了,排骨的單價(jià)上漲了

請根據(jù)上面的對話信息回答下列問題:

1)請用含的式子填空:上個月排骨的單價(jià)是 /斤,這個月蘿卜的單價(jià)是 /斤,排骨的單價(jià)是 /斤;

2)列式表示今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨-共多 花多少元?(結(jié)果要求化成最簡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201853日,中國科學(xué)院在上海發(fā)布了中國首款人工智能芯片:寒武紀(jì)(MLU100),該芯片在平衡模式下的等效理論峰值速度達(dá)每秒128 000 000 000 000次定點(diǎn)運(yùn)算,將數(shù)

128 000 000 000 000用科學(xué)計(jì)數(shù)法表示為(

A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地電話撥號入網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一.

計(jì)時制:0.05/;

包月制:50/(限一部個人住宅電話上網(wǎng)).

此外,每一種上網(wǎng)方式都得加收通信費(fèi)0.02/.

(1)某用戶某月上網(wǎng)的時間為x小時,請你分別寫出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用.

(2)若某用戶估計(jì)一個月內(nèi)上網(wǎng)的時間為20小時,你認(rèn)為采用哪種方式較為合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知⊙OΔADB的外接圓,∠ADB的平分線DCAB于點(diǎn)M,交⊙O于點(diǎn)C,連接AC,BC.

(1)求證:AC=BC;

(2)如圖2,在圖1 的基礎(chǔ)上做⊙O的直徑CFAB于點(diǎn)E,連接AF,過點(diǎn)A作⊙O的切線AH,若AH//BC,求∠ACF的度數(shù);

(3)在(2)的條件下,若ΔABD的面積為,ΔABDΔABC的面積比為2:9,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像過點(diǎn),,與軸交于另一點(diǎn),且對稱軸是直線.

(1)求該二次函數(shù)的解析式;

(2)若上的一點(diǎn),作,當(dāng)面積最大時,求的坐標(biāo);

(3)軸上的點(diǎn),過軸,與拋物線交于,過軸于.當(dāng)以、為頂點(diǎn)的三角形與、、為頂點(diǎn)的三角形相似時,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案