【題目】對于一組數(shù)據(jù)﹣1、4、﹣1、2下列結(jié)論不正確的是( )
A.平均數(shù)是1
B.眾數(shù)是-1
C.中位數(shù)是0.5
D.方差是3.5

【答案】D
【解析】這組數(shù)據(jù)的平均數(shù)是:(-1-1+4+2)÷4=1;-1出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是-1;把這組數(shù)據(jù)從小到大排列為:-1,-1,2,4,最中間的數(shù)是第2、3個數(shù)的平均數(shù),則中位數(shù)是 ;這組數(shù)據(jù)的方差是: [(-1-1)2+(-1-1)2+(4-1)2+(2-1)2]=4.5;故答案為:D.

方差(樣本方差)是每個樣本值與全體樣本值的平均數(shù)之差的平方值的平均數(shù),在實(shí)際問題中,方差是偏離程度的大小;一組數(shù)據(jù)按從小到大(或從大到。┑捻樞蛞来闻帕校幵谥虚g位置的一個數(shù)是中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù);求出它們的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作ABC關(guān)于點(diǎn)C成中心對稱的A1B1C1

2)將A1B1C1向右平移4個單位,作出平移后的A2B2C2

3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,長方形的兩邊長分別為m+1,m+7;如圖②,長方形的兩邊長分別為m+2m+4(其中m為正整數(shù))

(1) 圖①中長方形的面積=_______________

圖②中長方形的面積=_______________

比較:______(、”)

(2) 現(xiàn)有一正方形,其周長與圖①中的長方形周長相等,

①求正方形的邊長(用含m的代數(shù)式表示);

②試說明:該正方形面積與圖①中長方形面積的差(-)是定值.

(3) (1)的條件下,若某個圖形的面積介于、之間(不包括、)并且面積為整數(shù),這樣的整數(shù)值有且只有20個,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 中, ,tan ,AB=6cm.動點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1 cm/s的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以2cm/s的速度移動.若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時出發(fā),在運(yùn)動過程中, 的最大面積是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 關(guān)于直線 PQ 對稱,關(guān)于直線 MN對稱.

1)用無刻度直尺畫出直線MN

2)直線 MN PQ 相交于點(diǎn) O,試探究∠AOA2 與直線 MN,PQ 所夾銳角α的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),長方形 OABC,點(diǎn) B 的坐標(biāo)為(3,8),點(diǎn) A、C 分別在坐標(biāo)軸上,D OC 的中點(diǎn).

1)在 x 軸上找一點(diǎn) P,使得 PDPB 最小,則點(diǎn) P 的坐標(biāo)為 ;

2)在 x 軸上找一點(diǎn) Q,使得|QDQB|最大,求出點(diǎn) Q 的坐標(biāo)并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2-6ax+4a+3的圖像與y軸交于點(diǎn)A,點(diǎn)B是x軸上一點(diǎn),其坐標(biāo)為(1,0),連接AB,tan∠ABO=2.

(1)則點(diǎn)A的坐標(biāo)為 , a=;
(2)過點(diǎn)A作AB的垂線與該二次函數(shù)的圖像交于另一點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)連接BC,過點(diǎn)A作直線l交線段BC于點(diǎn)P,設(shè)點(diǎn)B、點(diǎn)C到l的距離分別為d1、d2 , 求d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,ABCDE為直線CD下方一點(diǎn),BF平分ABE

1)求證:ABE+∠CE180°

2)如圖2,EG平分BEC,過點(diǎn)BBHGE,求FBHC之間的數(shù)量關(guān)系.

3)如圖3,CN平分ECD,若BF的反向延長線和CN的反向延長線交于點(diǎn)M,且E+∠M130°,請直接寫出E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠C=90°,∠A=30°.

1)用直尺和圓規(guī)作AB的垂直平分線,分別交AC、AB于點(diǎn)ED(保留作圖痕跡,不寫作法)

2)猜想ACCE之間的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案