【題目】如圖,已知點A(2,0),以A為圓心作⊙Ay軸切于原點,與x軸的另一個交點為B,過B⊙A的切線l.

(1)以直線l為對稱軸的拋物線過點A,拋物線與x軸的另一個交點為點C,拋物線的頂點為點E,如果CO=2BE,求此拋物線的解析式;

(2)過點C⊙A的切線CD,D為切點,求此切線長;

(3)點F是切線CD上的一個動點,當(dāng)△BFC△CAD相似時,求出BF的長.

【答案】(1)y=(x-2)(x-6);(2)CD=2;(3)BF的長為

【解析】

(1)由題意可知拋物線的對稱軸為x=4,然后設(shè)出拋物線的兩點式,然后將點E的坐標(biāo)代入求解即可;

(2)由于AD是⊙A的切線,連接AD,那么根據(jù)切線的性質(zhì)知ADCD,在RtACD中,可利用勾股定理求得切線CD的長度;

(3)若BFCCAD相似,則有兩種情況需要考慮:①△FBC∽△ADC,②△BFC∽△CAD,根據(jù)不同的相似三角形所得不同的比例線段即可求得CF的長.

1)∵A2,0),⊙Ay軸切于原點,

∴⊙A的半徑為2

∴點B的坐標(biāo)為為(4,0).

∵點A、C關(guān)于x=4對稱,

C6,0).

CO=2BE,

E4,-3

設(shè)拋物線的解析式為y=ax-2)(x-6),(a≠0);

∵拋物線經(jīng)過點E4,-3

-3=a4-2)(4-6),

解得:a=

∴拋物線的解析式為y=x-2)(x-6);

2)如圖1所示:連接AD,

AD是⊙A的切線,

∴∠ADC=90°,AD=2

由(1)知,C6,0).

A2,0),

AC=4,

RtACD中,CD2=AC2-AD2=42-22=12,

CD=2

3)如圖2所示:當(dāng)FBAD時,連結(jié)AD

∵∠FBC=ADC=90°,∠FCB=ACD,

∴△FBC∽△ADC,

=,即=

解得:CF=

如圖3所示:當(dāng)BFCD時,連結(jié)AD、過點BBFCD,垂足為F

ADCD

BFAD,

∴△BFC∽△ADC

=,即=

CF=

綜上所述,BF的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b(其中a、b、m、n均為整數(shù))

則有:a+b,∴am2+2n2b2mn,這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當(dāng)a、bm、n均為正整數(shù)時,若a+b,用含m、n的式子分別表示ab得:a   ,b   ;

(2)利用所探索的結(jié)論,用完全平方式表示出:7+4   

(3)請化簡:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結(jié)CE,DF

1)求證:四邊形CEDF為平行四邊形;

2)若AB6cm,BC10cm,∠B60°,

當(dāng)AE  cm時,四邊形CEDF是矩形;

當(dāng)AE  cm時,四邊形CEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC中,點D.E分別在邊BC,AB上,且BD=AE,ADCE交于點F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量某建筑物AB的高度,在離該建筑物底部20m的點C處,目測建筑物頂端A處,視線與水平線夾角∠ADE38.5°,目高CD1.6m.求建筑物AB的高度.(結(jié)果精確到1m(參考數(shù)據(jù):sin38.5°=0.623,cos38.5°=0.783,tan38.5°=0.795)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2-4x+c,函數(shù)值y與自變量x之間的部分對應(yīng)值如表:

x

-2

-1

0

1

2

y

15

m

n

0

k

(1)求這個二次函數(shù)的關(guān)系式.

(2)直接寫出m、n、k之間的大小關(guān)系.(用“>”連接)

(3)若點P在這個二次函數(shù)的圖象上,且點Px軸的距離為1,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點O是坐標(biāo)原點,四邊形ABCO是菱形,點A的坐標(biāo)為(﹣3,4),點Cx軸的正半軸上,直線ACy軸于點M,AB邊交y軸于點H,連接BM.

(1)菱形ABCO的邊長   

(2)求直線AC的解析式;

(3)動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設(shè)PMB的面積為S(S≠0),點P的運動時間為t秒,

①當(dāng)0<t<時,求St之間的函數(shù)關(guān)系式;

②在點P運動過程中,當(dāng)S=3,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計劃購進(jìn)甲、乙兩種商品,乙種商品的進(jìn)價是甲種商品進(jìn)價的九折,用3600元購買乙種商品要比購買甲種商品多買10件.

1)求甲、乙兩種商品的進(jìn)價各是多少元?

2)該商店計劃購進(jìn)甲、乙兩種商品共80件,且乙種商品的數(shù)量不低于甲種商品數(shù)量的3倍.甲種商品的售價定為每件80元,乙種商品的售價定為每件70元,若甲、乙兩種商品都能賣完,求該商店能獲得的最大利潤.

查看答案和解析>>

同步練習(xí)冊答案