【題目】如圖,△ABC中,ACAB.

(1)AB邊的垂直平分線交BC于點P,作AC邊的垂直平分線交BC于點Q,連接AP,AQ.(尺規(guī)作圖,保留作圖痕跡,不需要寫作法)

(2)(1)的條件下,若BC14,求△APQ的周長.

【答案】1)見解析;(2)△APQ的周長為14.

【解析】

1)利用基本作圖(作已知線段的垂直平分線)作AB的垂直平分線交BC于點P;作AC邊的垂直平分線交BC于點Q,

2)根據(jù)線段垂直平分線的性質得到PA=PBAQ=QC,然后利用等線段代換得到△APQ的周長=BC

解:(1)如圖所示:

(2)∵DPAB的垂直平分線,QEAC的垂直平分線,

PAPB,QAQC,

PAQAPQPBQCPQBC14

APQ的周長為14.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖在中,,,則( )

A. 1:8:27 B. 1:4:9 C. 1:8:36 D. 1:9:36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B30°,∠C50°AE∠BAC的平分線,AD是高.

(1)∠BAE的度數(shù);

(2)∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖中,AEABAEABBCCDBCCD,若點EBD到直線AC的距離分別為6、3、2,則圖中實線所圍成的陰影部分面積S( )

A.50B.44C.38D.32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,矩形ABCD的一條邊AB=10,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,折痕為AO.

(1)求證:△OCP∽△PDA;

(2)若OCP與PDA的面積比為1:4,求邊AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=6cm,BC=4cm,點DAB的中點

⑴如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCPQ是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為______cm/s時,在某一時刻也能夠使BPDCPQ全等

⑵若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都按逆時針方向沿ABC的三邊運動求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在ABC的哪條邊上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC在平面直角坐標系中的位置如圖所示.將△ABC向右平移6個單位長度,再向下平移4個單位長度得到△A1B1C1.(圖中每個小方格邊長均為1個單位長度).

1)在圖中畫出平移后的△A1B1C1

2)直接寫出△A1B1C1.各頂點的坐標:A1____B1____C1____

3)求出△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用因式分解法解下列方程:

(1)(4x﹣1)(5x+7)=0.

(2)3x(x﹣1)=2﹣2x.

(3)(2x+3)2=4(2x+3).

(4)2(x﹣3)2=x2﹣9.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1、2、34,另有一個可以自由旋轉的圓盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、23(如圖所示).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉動圓盤,如果所摸球上的數(shù)字與圓盤上轉出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

同步練習冊答案