【題目】如圖,P是正方形ABCD對角線BD上一點,PEDC,PFBC,EF分別為垂足.

1)求證:APDCPD;

2)若CF=3CE=4,求AP的長.

【答案】1)證明見解析;(25

【解析】試題分析

(1)根據正方形的性質,用SAS證明△APD≌△CPD;

(2)證明四邊形PEDF是矩形,用勾股定理求EF,結合矩形的性質和(1)的結論求AP的長.

試題解析

證明:(1)∵四邊形ABCD是正方形,

∴AD=CD,∠ADP=∠CDP=45°,∠BCD=90°,

△APD△CPD中,

∴△APD≌△CPD(SAS);

(2)解:∵△APD≌△CPD,∴AP=PC,

四邊形ABCD是正方形,∴∠BCD=90°,

∵PE⊥DC,PF⊥BC,∴∠PEC=∠PFC=90°,

四邊形PECF是矩形,∴PC=EF,∴AP=EF.

∵∠DCB=90°,∴Rt△CEF中,EF===5,

∴AP=EF=5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CBy,y軸負半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點坐標;

(2)如圖2,D為線段OB上一動點,ADAC,ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù).

(3)如圖3,D點在線段OB上運動時,DMADBCM,BMD、DAO的平分線交于N,D點在運動過程中,N的大小是否變化?若不變,求出其值,若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,厘米,厘米,點的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時點在線段上由點向點運動.當一個點停止運動時,另一個點也隨之停止運動.

(1)用含有的代數(shù)式表示,則_______厘米;

(2)若點的運動速度與點的運動速度相等,經過秒后,是否全等,請說明理由;

(3)若點的運動速度與點的運動速度不相等,那么當點的運動速度為多少時,能夠使全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線y=2x+3x軸交于點A,與直線y=x交于點B

1)點A坐標為   ,∠AOB=   

2)求SOAB的值;

3)動點E從原點O出發(fā),以每秒1個單位長度的速度沿著O→A的路線向終點A勻速運動,過點EEFx軸交直線y=x于點F,再以EF為邊向右作正方形EFGH.設運動t秒時,正方形EFGHOAB重疊部分的面積為S.求:St之間的函數(shù)關系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知等邊ABC中,DAC的中點,EBC延長線上的一點,且CE=CD,DMBC,垂足為M.

(1)求∠E的度數(shù).

(2)求證:MBE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.

解:∵∠1+∠EFD=180°(鄰補角定義),∠1+∠2=180°(已知。

   (同角的補角相等)①

   (內錯角相等,兩直線平行)②

∴∠ADE=∠3(   )③

∵∠3=∠B(   )④

   (等量代換)⑤

∴DE∥BC(   )⑥

∴∠AED=∠C(   )⑦

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)”是我國流傳了上千年的傳統(tǒng)節(jié),全國各地舉行了豐富多彩的紀念活動,為了繼承傳統(tǒng),減緩學生考前的心理壓力,某班學生組織了一次拔河比賽,裁判員讓兩隊隊長用“石頭、剪刀、布”的手勢方式選擇場地位置,規(guī)則:石頭勝剪刀,剪刀勝布,布勝石頭,手勢相同則再決勝負.

(1)用列表或畫樹狀圖法,列出甲、乙兩隊手勢可能出現(xiàn)的情況;

(2)裁判員的這種做法對甲、乙雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個計算器,計算時只能顯示1.41421356237十三位(包括小數(shù)點),現(xiàn)在想知道7后面的數(shù)字是什么,可以在這個計算器中計算下面哪一個值(

A. 10 B. 10-1 C. 100 D. -1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,C,D,B在以O點為圓心,OA長為半徑的圓弧上, AC=CD=DBABOC于點E.求證:AE=CD

查看答案和解析>>

同步練習冊答案