【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】B
【解析】
解:∵拋物線和x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,
∴4ac﹣b2<0,∴①正確;
∵對(duì)稱軸是直線x﹣1,和x軸的一個(gè)交點(diǎn)在點(diǎn)(0,0)和點(diǎn)(1,0)之間,
∴拋物線和x軸的另一個(gè)交點(diǎn)在(﹣3,0)和(﹣2,0)之間,
∴把(﹣2,0)代入拋物線得:y=4a﹣2b+c>0,
∴4a+c>2b,∴②錯(cuò)誤;
∵把(1,0)代入拋物線得:y=a+b+c<0,
∴2a+2b+2c<0,
∵b=2a,
∴3b,2c<0,∴③正確;
∵拋物線的對(duì)稱軸是直線x=﹣1,
∴y=a﹣b+c的值最大,
即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正確;
即正確的有3個(gè),
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將長(zhǎng)為2、寬為a(a大于1且小于2)的長(zhǎng)方形紙片按如圖①所示的方式折疊并壓平,剪下一個(gè)邊長(zhǎng)等于長(zhǎng)方形寬的正方形,稱為第一次操作:再把剩下的長(zhǎng)方形按如圖②所示的方式折疊并壓平,剪下個(gè)邊長(zhǎng)等于此時(shí)長(zhǎng)方形寬的正方形,稱為第二次操作:如此反復(fù)操作下去…,若在第n次操作后,剩下的長(zhǎng)方形恰為正方形,則操作終止當(dāng)n=3時(shí),a的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量(單位:m3)和使用了節(jié)木龍頭50天的日用水量,得到頻數(shù)分布表如下:
表1未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用水量x | 0≤x<0.1 | 0.1≤x<0.2 | 0.2≤x<0.3 | 0.3≤x<0.4 | 0.4≤x<0.5 | 0.5≤x<0.6 | 0.6≤x≤0.7 |
頻數(shù) | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
表2使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用水量x | 0≤x<0.1 | 0.1≤x<0.2 | 0.2≤x<0.3 | 0.3≤x<0.4 | 0.4≤x<0.5 | 0.5≤x<0.6 |
頻數(shù) | 1 | 5 | 13 | 10 | 16 | 5 |
(1)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.3 m3的概率;
(2)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,為對(duì)角線上一點(diǎn),點(diǎn)在直線上,且.如圖①,當(dāng)時(shí),點(diǎn)在線段的延長(zhǎng)線上,線段之間的數(shù)量關(guān)系是(無(wú)需證明);
(1)如圖②,當(dāng),點(diǎn)在線段上時(shí),線段之間有怎樣的數(shù)量關(guān)系?寫(xiě)出你的猜想,并給予證明;
(2)如圖③,當(dāng),點(diǎn)在線段的延長(zhǎng)線上時(shí),直接寫(xiě)出線段之間又有怎樣的數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以為直徑的上,與過(guò)點(diǎn)的切線垂直,垂足為交于點(diǎn),過(guò)作交于點(diǎn),連接.
(1)求證:;
(2)已知,過(guò)作交于,連接,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在x軸的上方,直角∠BOA繞原點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn).若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點(diǎn),則∠OAB大小的變化趨勢(shì)為( )
A.逐漸變小B.逐漸變大C.時(shí)大時(shí)小D.保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠按用戶的月需求量(件)完成一種產(chǎn)品的生產(chǎn),其中.每件的售價(jià)為18萬(wàn)元,每件的成本(萬(wàn)元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量(件)成反比.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).
月份(月) | 1 | 2 |
成本(萬(wàn)元/件) | 11 | 12 |
需求量(件/月) | 120 | 100 |
(1)求與滿足的關(guān)系式,請(qǐng)說(shuō)明一件產(chǎn)品的利潤(rùn)能否是12萬(wàn)元;
(2)求,并推斷是否存在某個(gè)月既無(wú)盈利也不虧損;
(3)在這一年12個(gè)月中,若第個(gè)月和第個(gè)月的利潤(rùn)相差最大,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點(diǎn)C恰落在雙曲線y=(x>0)上,此時(shí)□OABC的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司經(jīng)銷(xiāo)的一種產(chǎn)品每件成本為40元,要求在90天內(nèi)完成銷(xiāo)售任務(wù).已知該產(chǎn)品90天內(nèi)每天的銷(xiāo)售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
x+50 | 90 |
任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)銷(xiāo)售員小王90天內(nèi)日銷(xiāo)售量p(件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系p=﹣2x+200.設(shè)小王第x天銷(xiāo)售利潤(rùn)為W元.
(1)直接寫(xiě)出W與x之間的函數(shù)關(guān)系式,井注明自變量x的取值范圍;
(2)求小生第幾天的銷(xiāo)售量最大?最大利潤(rùn)是多少?
(3)任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)平均每個(gè)銷(xiāo)售員每天銷(xiāo)售利潤(rùn)為4800公司制定如下獎(jiǎng)勵(lì)制度:如果一個(gè)銷(xiāo)售員某天的銷(xiāo)售利潤(rùn)超過(guò)該平均值,則該銷(xiāo)售員當(dāng)天可獲得200元獎(jiǎng)金.請(qǐng)計(jì)算小王一共可獲得多少元獎(jiǎng)金?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com