【題目】已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式;
(2)求拋物線的頂點(diǎn)坐標(biāo)、對稱軸;
(3)若過點(diǎn)C的直線與拋物線相交于點(diǎn)E(4,m),請連接CB,BE并求出△CBE的面積S的值.
【答案】(1)y=x2﹣6x+5;(2)當(dāng)x≥3時y隨x的增大而增大;(3)10.
【解析】
(1)設(shè)拋物線 把C的坐標(biāo)代入求出即可;
(2)把拋物線的解析式化成頂點(diǎn)式,求得對稱軸,根據(jù)拋物線的性質(zhì)即可求得x的取值;
(3)求出E的坐標(biāo),把C(0,5),E(4,-3)代入y=kx+b得到方程組,求出方程組的解即可得到一次函數(shù)的解析式,求出直線與X軸的交點(diǎn),根據(jù)三角形的面積公式求出即可.
(1)∵A(1,0),B(5,0),
設(shè)拋物線
把C(0,5)代入得:
解得:a=1,
即拋物線的函數(shù)關(guān)系式是
(2)
∴拋物線的對稱軸為x=3,
又∵二次函數(shù)的二次項(xiàng)系數(shù)為1>0,
∴拋物線的開口向上,
∴當(dāng)x≥3時y隨x的增大而增大;
(3)把x=4代入得:y=﹣3,
∴E(4,﹣3),
把C(0,5),E(4,﹣3)代入得: ,
解得:
設(shè)直線交x軸于D,
當(dāng)y=0時,,
∴x=,
∴OD=,
BD=5﹣=,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無論k為何值,方程總有兩個不相等實(shí)數(shù)根;
(2)若原方程的一根大于3,另一根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點(diǎn)分別是A(-4, 1),B(-1,3),C(-1,1)
(1)將△ABC以原點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△;平移△ABC,若A對應(yīng)的點(diǎn)坐標(biāo)為(-4,-5),畫出△;
(2)若△繞某一點(diǎn)旋轉(zhuǎn)可以得到△,直接寫出旋轉(zhuǎn)中心坐標(biāo)是__________;
(3)在x軸上有一點(diǎn)P是的PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo)___________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時y與x之間的函數(shù)表達(dá)式;
(3)求小張與小李相遇時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小強(qiáng)洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強(qiáng)身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點(diǎn)D,C,G,K在同一直線上).
(1)此時小強(qiáng)頭部E點(diǎn)與地面DK相距多少?
(2)小強(qiáng)希望他的頭部E恰好在洗漱盆AB的中點(diǎn)O的正上方,他應(yīng)向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α,將△BOC繞點(diǎn)C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD,得△AOD,若△AOD為等腰三角形,則α=________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)△ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,5)、(﹣1,3).
(1)請?jiān)趫D中正確作出平面直角坐標(biāo)系;
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)點(diǎn)B′的坐標(biāo)為 ,△A′B′C′的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com