【題目】小美周末來(lái)到公園,發(fā)現(xiàn)在公園一角有一種守株待兔游戲.游戲設(shè)計(jì)者提供了一只兔子和一個(gè)有A,B,C,D,E五個(gè)出入口的兔籠,而且籠內(nèi)的兔子從每個(gè)出入口走出兔籠的機(jī)會(huì)是均等的.規(guī)定:①玩家只能將小兔從A,B兩個(gè)出入口放入:②如果小兔進(jìn)入籠子后選擇從開(kāi)始進(jìn)入的出入口離開(kāi),則可獲得一只價(jià)值4元的小兔玩具,否則應(yīng)付費(fèi)3元.

1)請(qǐng)用畫(huà)樹(shù)狀圖的方法,列舉出該游戲的所有可能情況;

2)小美得到小兔玩具的機(jī)會(huì)有多大?

【答案】1)見(jiàn)解析;(2;(3200

【解析】

1)畫(huà)樹(shù)狀圖展示所有10種等可能的結(jié)果數(shù);
2)找出從開(kāi)始進(jìn)入的出入口離開(kāi)的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)畫(huà)樹(shù)狀圖為:

2)由樹(shù)狀圖知,共有10種等可能的結(jié)果數(shù),其中從開(kāi)始進(jìn)入的出入口離開(kāi)的結(jié)果數(shù)為2,

所以小美玩一次守株待兔游戲能得到小兔玩具的概率=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=mx+5的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于A(yíng)(1,n)和B(4,1)兩點(diǎn),過(guò)點(diǎn)A作y軸的垂線(xiàn),垂足為M.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAM的面積S;

(3)在y軸上求一點(diǎn)P,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰中,,點(diǎn)上一點(diǎn)(不重合),連接,將線(xiàn)段繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到線(xiàn)段.連接. 探究的度數(shù),以及線(xiàn)段的數(shù)量關(guān)系.

(1)嘗試探究:如圖(1) ;

(2)類(lèi)比探索:如圖(2),點(diǎn)在直線(xiàn)上,且在點(diǎn)右側(cè),還能得出與(1)中同樣的結(jié)論么?請(qǐng)寫(xiě)出你得到的結(jié)論并證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,將四邊形折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,折痕為BF.

1)求證:四邊形ABEF為菱形;

2)連接ACEF于點(diǎn)P CD=2CE,SPCE=2,求PAF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=x+cx軸交于點(diǎn)A3,0),與y軸交于點(diǎn)B,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)A,B,Mm,0)為x軸上一動(dòng)點(diǎn),點(diǎn)M在線(xiàn)段OA上運(yùn)動(dòng)且不與O,A重合,過(guò)點(diǎn)M且垂直于x軸的直線(xiàn)與直線(xiàn)AB及拋物線(xiàn)分別交于點(diǎn)P,N

1)求點(diǎn)B的坐標(biāo)和拋物線(xiàn)的解析式;

2)在運(yùn)動(dòng)過(guò)程中,若點(diǎn)P為線(xiàn)段MN的中點(diǎn),求m的值;

3)在運(yùn)動(dòng)過(guò)程中,若以B,PN為頂點(diǎn)的三角形與△APM相似,求點(diǎn)M的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2bxc(a≠0)的頂點(diǎn)和該拋物線(xiàn)與y軸的交點(diǎn)在一次函數(shù)ykx1(k≠0)的圖象上,它的對(duì)稱(chēng)軸是x1.有下列四個(gè)結(jié)論,①. abc0; . a<-;③. a=-k;④. 當(dāng)0x1時(shí),axbk,其中正確結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).

(1)畫(huà)出ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的A1B1C1;

(2)寫(xiě)出A1B1C1的頂點(diǎn)坐標(biāo)

(3)求出A1B1C1的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為宣傳掃黑除惡專(zhuān)項(xiàng)行動(dòng),社區(qū)準(zhǔn)備制作一幅宣傳版面,噴繪時(shí)為了美觀(guān),要在矩形圖案四周外圍增加一圈等寬的白邊,已知圖案的長(zhǎng)為2米,寬為1米,圖案面積占整幅宣傳版面面積的90%,若設(shè)白邊的寬為x米,則根據(jù)題意可列出方程( )

A. 90%×(2+x)(1+x)=2×1 B. 90%×(2+2x)(1+2x)=2×1

C. 90%×(2﹣2x)(1﹣2x)=2×1 D. (2+2x)(1+2x)=2×1×90%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等腰直角三角形ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案