【題目】如圖,平分,,于點,,,那么的長度為___.
【答案】2.5cm.
【解析】
過C作CF⊥AB的延長線于點F,由條件可證△AFC≌△AEC,得到CF=CE.再由條件∠ABC+∠D=180°,可得△FBC≌△EDC,由全等的性質可得BF=ED,問題可得解.
如圖,過C作CF⊥AB的延長線于點F,
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AD,CF⊥AB,
∴∠BFC=∠CED=90°,
在△AFC和△AEC中,
,
∴△AFC≌△AEC,
∴AF=AE,CF=CE,
∵∠ABC+∠D=180°,
∴∠FBC=∠EDC,
∴△FBC≌△EDC,
∴BF=ED,
∴AB+AD=AE+ED+AF-BF=2AE,
∵AD=12cm,AB=7cm,
∴19=2AE,
∴AE=9.5cm,
∴DE=AD-AE=12-9.5=2.5cm.
科目:初中數(shù)學 來源: 題型:
【題目】兩地相距,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā)。圖中表示兩人離地的距離與時間的關系,結合圖象回答下列問題:
(1)表示甲離地的距離與時間關系的圖象是_____(填或),甲的速度是__________,乙的速度是____________。
(2)甲出發(fā)后多少時間兩人恰好相距?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖棱長為a的小正方體,按照下圖的方法繼續(xù)擺放,自上而下分別叫第一層、第二層…第n層,第n層的小正方體的個數(shù)記為S.解答下列問題:
n | 1 | 2 | 3 | 4 | … |
S | 1 | 3 | … |
(1)按要求填寫上表:
(2)研究上表可以發(fā)現(xiàn)S隨n的變化而變化,且S隨n的增大而增大有一定的規(guī)律,請你用式子來表示S與n的關系,并計算當n=10時,S的值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在反比例函數(shù)y= (x>0)的圖象上,有點P1 , P2 , P3 , P4 , 它們的橫坐標依次為1,2,3,4,分別過這些點作x軸與y軸的垂線,圖中所構成的陰影部分的面積從左到右依次為S1 , S2 , S3 , 則S1+S2+S3=( )
A.1
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC為等腰直角三角形,∠CAB=90°,點A,點B的坐標分別為A(0,a),B(b,0),且a,b滿足a2+b2﹣4a﹣8b+20=0,AC與x軸交于點D.
(1)求△AOB的面積;
(2)求證:點D為AC的中點;
(3)點E為x軸的負半軸上的動點,分別以OA,AE為直角邊在第一、二象限作等腰直角三角形△OAN和等腰直角三角形△EAM,連接MN交y軸于點P,試探究線段OE與AP的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(4﹣n,﹣4)是直線y=kx+b和雙曲線y=的兩個交點.
(1)求兩個函數(shù)的表達式;
(2)觀察圖象,直接寫出不等式kx+b﹣≥0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com