【題目】(12分)某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話。
(1)求每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關系式。(6分)
(2)該超市銷售這種水果每天獲取的利潤為1040元,那么銷售單價為多少元?(6分)
【答案】(1)y=-20x+500,(2)12,21(舍去)
【解析】
試題分析:(1)因為y是x的一次函數(shù),所以設y=kx+b,把x=10,y=300;x=11,y=250代入,然后解方程組即可得到k,b,從而得出y(千克)與x(元)(x>0)的函數(shù)關系式;(2)根據(jù)每天獲取的利潤=每千克的利潤×每天的銷售量得到方程:(x-8)(-50x+800)=1040,然后解方程即可.
試題解析:(1)因為y是x的一次函數(shù),所以設y=kx+b,
∵x=10,y=300;x=13,y=240,
∴,解得,
∴y=﹣20x+500,
(2)根據(jù)題意可得:(x﹣8)y=1040,所以(x-8)(-50x+800)=1040,解得x=12或x=21,因為要保證每天銷售200千克以上,所以x=21不合題意舍去,所以x=12,
答:銷售單價為12元.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與軸只有一個公共點.
()求的值.
()怎樣平移拋物線就可以得到拋物線?請寫出具體的平移方法.
()若點和點都在拋物線上,且,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用6000元購進A,B兩種新式服裝,按標價售出后可獲得毛利潤3800元(毛利潤=售價-進價).這兩種服裝的進價,標價如表所示.
(1)求這兩種服裝各購進的件數(shù);
(2)如果A種服裝按標價的8折出售,B種服裝按標價的7折出售,那么這批服裝全部售完后,服裝店比按標價出售少收入多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x和直線y=﹣x+5相交于點M,直線PQ⊥x軸,分別交直線y=﹣x+5和直線y=x于點P、Q,點R是y軸上一點,若△PQR為等腰直角三角形.求點R的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=kx+b的圖象與x軸、y軸分別交于點A(12,0),與函數(shù)y=x的圖象交于點E,點E的橫坐標為3.
(1)求函數(shù)y=kx+b的表達式;
(2)在x軸上有一點F(a,0),過點F作x軸的垂線,分別交函數(shù)y=kx+b的圖象和函數(shù)y=x的圖象于點C,D,若四邊形OBDC是平行四邊形,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復原了《海島算經》九題古證,根據(jù)圖形可知他得出的這個推論指( )
A. S矩形ABMN=S矩形MNDCB. S矩形EBMF=S矩形AEFN
C. S矩形AEFN=S矩形MNDCD. S矩形EBMF=S矩形NFGD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】知識再現(xiàn):已知,如圖,四邊形ABCD是正方形,點M、N分別在邊BC、CD上,連接AM、AN、MN,∠MAN=45°,延長CB至G使BG=DN,連接AG,根據(jù)三角形全等的知識,我們可以證明MN=BM+DN.
知識探究:(1)在如圖中,作AH⊥MN,垂足為點H,猜想AH與AB有什么數(shù)量關系?并證明;
知識應用:(2)如圖,已知∠BAC=45°,AD⊥BC于點D,且BD=2,AD=6,則CD的長為 ;
知識拓展:(3)如圖,四邊形ABCD是正方形,E是邊BC的中點,F為邊CD上一點,∠FEC=2∠BAE,AB=24,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司有A、B兩種型號的客車共20輛,它們的載客量、每天的租金如表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求A、B兩種型號的客車各有多少輛?
(2)某中學計劃租用A、B兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學租車的總費用不超過4600元.
①求最多能租用多少輛A型號客車?
②若七年級的師生共有305人,請寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com