【題目】如圖,已知、相切于點(diǎn)、,連接并延長交于點(diǎn).若,

)求的半徑

)求的長.

【答案】(1)3;(2)

【解析】試題分析:(1)連接半徑OA,Rt△OCD根據(jù)勾股定理列方程可求得r的值

(2)由垂直平分線的逆定理得OABC的中垂線,根據(jù)垂徑定理得BE=CE最后利用面積法列式可求得BE的長,BC=2BE即可得到結(jié)論

試題解析:(1)連接OC.∵ABACO的切線,∴AB=AC=6,OCAD,BDAB,∴∠ABD=∠OCD=90°,Rt△ABD,由勾股定理得AD==10,∴CD=10﹣6=4.∵⊙O的半徑r,∴OB=OC=r,OD=8﹣r,Rt△OCD,(8﹣r2=r2+42,64﹣16r=16,∴r=3;

(2)連接OA,BCE.∵AB=ACOB=OC,∴OABC的中垂線,∴BE=CE,Rt△ABO,AO==,∴SABO=ABOB=OABE,6×3=BE,∴BE=,∴BC=2BE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長是1),ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o的直角坐標(biāo)系中解答下列問題:

1作出ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB1C1

2作出ABC關(guān)于原點(diǎn)O成中心對稱的A1B2C2

3)請直接寫出以A1、B2C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角形的直角頂點(diǎn)0按圖1方式疊放在一起(其中∠C30°,∠CDO60°;∠OAB=∠OBA45°).COD繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,旋轉(zhuǎn)的速度為每秒10°,若旋轉(zhuǎn)時(shí)間為t秒,請回答下列問題:(請直接寫出答案)

(1)當(dāng)0t9時(shí)(如圖2),∠BOC與∠AOD有何數(shù)量關(guān)系

(2)當(dāng)t為何值時(shí),邊OACD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分某校八年級學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會實(shí)踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們在活動結(jié)束后的對話。

1求每天的銷售量y千克與銷售單價(jià)x之間的函數(shù)關(guān)系式。6分

2該超市銷售這種水果每天獲取的利潤為1040元,那么銷售單價(jià)為多少元?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】愛滿金陵慈善一日捐活動中,學(xué)校團(tuán)總支為了了解本校寫生的捐款情況,隨機(jī)抽取了名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

)這名同學(xué)捐款的眾數(shù)為__________元,中位數(shù)為__________.

)求這名同學(xué)捐款的平均數(shù).

)該校共有名學(xué)生參與捐款,請估計(jì)該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生全部參加初二生物地理會考,從中抽取了部分學(xué)生的生物考試成績,將他們的成績進(jìn)行統(tǒng)計(jì)后分為A,B,C,D四等級,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題(說明:測試成績在總?cè)藬?shù)的前30%考生為A等級,前30%至前70%B等級,前70%至前90%C等級,90%以后為D等級)

1)抽取了 名學(xué)生成績;

2)請把頻數(shù)分布直方圖補(bǔ)充完整;

3)扇形統(tǒng)計(jì)圖中A等級所在的扇形的圓心角度數(shù)是

4)若測試成績在總?cè)藬?shù)的前90%為合格,該校初二年級有800名學(xué)生,求全年級生物合格的學(xué)生共約多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)的圖象過點(diǎn),且頂點(diǎn)坐標(biāo)為

求此二次函數(shù)的表達(dá)式;

畫出此函數(shù)圖象,并根據(jù)函數(shù)圖象寫出:當(dāng)時(shí),y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,點(diǎn)E、F分別在AD、BC上,EFBD相交于點(diǎn)O,AE=CF

1)求證:OE=OF

2)連接BE、DF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:

甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作A,B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.

根據(jù)兩人的作法可判斷

A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤

查看答案和解析>>

同步練習(xí)冊答案