【題目】(2016浙江省衢州市)如圖,正方形ABCD的頂點A,B在函數(shù)(x>0)的圖象上,點C,D分別在x軸,y軸的正半軸上,當(dāng)k的值改變時,正方形ABCD的大小也隨之改變.
(1)當(dāng)k=2時,正方形A′B′C′D′的邊長等于____.
(2)當(dāng)變化的正方形ABCD與(1)中的正方形A′B′C′D′有重疊部分時,k的取值范圍是______________.
【答案】 ≤k≤18.
【解析】解:(1)如圖,過點A′作AE⊥y軸于點E,過點B′⊥x軸于點F,則∠A′ED′=90°.
∵四邊形A′B′C′D′為正方形,∴A′D′=D′C′,∠A′D′C′=90°,∴∠OD′C′+∠ED′A′=90°.∵∠OD′C′+∠OC′D′=90°,∴∠ED′A′=∠OC′D′.
在△A′ED′和△D′OC′中,∵∠ED′A′=∠OC′D′,∠A′ED′=∠D′OC′,A′D′=D′C′,∴△A′ED′≌△D′OC′(AAS),∴OD′=EA′,OC′=ED′.
同理△B′FC′≌△C′OD′.
設(shè)OD′=a,OC′=b,則EA′=FC′=OD′=a,ED′=FB′=OC′=b,即點A′(a,a+b),點B′(a+b,b).∵點A′、B′在反比例函數(shù)的圖象上,∴,解得:或(舍去).
在Rt△C′OD′中,∠C′OD′=90°,OD′=OC′=1,∴C′D′==.
故答案為:.
(2)設(shè)直線A′B′解析式為,直線C′D′解析式為,∵點A′(1,2),點B′(2,1),點C′(1,0),點D′(0,1),∴有和,解得:和,∴直線A′B′解析式為y=﹣x+3,直線C′D′解析式為y=﹣x+1.設(shè)點A的坐標(biāo)為(m,2m),點D坐標(biāo)為(0,n).
當(dāng)A點在直線C′D′上時,有2m=﹣m+1,解得:m=,此時點A的坐標(biāo)為(,),∴k=×=;
當(dāng)點D在直線A′B′上時,有n=3,此時點A的坐標(biāo)為(3,6),∴k=3×6=18.
綜上可知:當(dāng)變化的正方形ABCD與(1)中的正方形A′B′C′D′有重疊部分時,k的取值范圍為≤k≤18.故答案為:≤k≤18.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程
(1)在方程①3x﹣1=0,②x﹣(3x+1)=﹣7中,不等式組的關(guān)聯(lián)方程是 ;(填序號)
(2)若不等式組的一個關(guān)聯(lián)方程的解是整數(shù),則這個關(guān)聯(lián)方程可以是 ;(寫出一個即可)
(3)若方程10﹣3x=2x,1+x=2(x﹣1)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織340名師生進行長途考察活動,帶有行李170件,計劃租用甲、乙兩種型號的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請你幫助學(xué)校設(shè)計所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問哪種可行方案使租車費用最省?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》記載“今有邑方不知大小,各中開門.出北門三十步有木,出西門七百五十步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,ME⊥AD,NF⊥AB,EF過點A,且ME=30步,NF=750步,則正方形的邊長為( 。
A. 150步B. 200步C. 250步D. 300步
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈.據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的路口,還會感應(yīng)避讓障礙物,自動歸隊取包裹,沒電的時候還會自己找充電樁充電.某快遞公司啟用40臺A種機器人、150臺B種機器人分揀快遞包裹,A、B兩種機器人全部投入工作,1小時共可以分揀0.77萬件包裹;若全部A種機器人工作1.5小時,全部B種機器人工作2小時,一共可以分揀1.38萬件包裹.
(1)求兩種機器人每臺每小時各分揀多少件包裹?
(2)為進一步提高效率,快遞公司計劃再購進A、B兩種機器人共100臺.若要保證新購進的這批機器人每小時的總分揀量不少于5500件,求至少應(yīng)購進A種機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中,裝有2個紅球,1個白球,1個黃球,這些球除顏色外都相同.求下列事件的概率:
(1)攪勻后從中任意摸出1個球,恰好是紅球;
(2)攪勻后從中任意摸出2個球,2個都是紅球.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com