【題目】某學(xué)校組織340名師生進(jìn)行長(zhǎng)途考察活動(dòng),帶有行李170件,計(jì)劃租用甲、乙兩種型號(hào)的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請(qǐng)你幫助學(xué)校設(shè)計(jì)所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問(wèn)哪種可行方案使租車費(fèi)用最省?
【答案】
【1】
【2】 (2)甲4乙6費(fèi)用最小
【解析】
試題(1)設(shè)甲車租x輛,則乙車租(10-x)輛,根據(jù)關(guān)系:甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李,即可列出不等式組,解出即可;
(2)設(shè)租車的總費(fèi)用為y元,根據(jù)甲車的租金為每輛2000元,乙車的租金為每輛1800元,即可得到y與x的一次函數(shù)關(guān)系式,再根據(jù)一次函數(shù)的增減性,即可判斷哪種可行方案使租車費(fèi)用最。
(1)設(shè)甲車租x輛,則乙車租(10-x)輛,根據(jù)題意,得
解得
∵x是整數(shù)
∴x=4、5、6、7
∴所有可行的租車方案共有四種:①甲車4輛、乙車6輛;②甲車5輛、乙車5輛;③甲車6輛、乙車4輛;④甲車7輛、乙車3輛.
(2)設(shè)租車的總費(fèi)用為y元,則y=2000x+1800(10-x),
即y=200x+18000
∵k=200>0,
∴y隨x的增大而增大
∵x=4、5、6、7
∴x=4時(shí),y有最小值為18800元,即租用甲車4輛、乙車6輛,費(fèi)用最。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C、E和B、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )
A. 80° B. 90° C. 100° D. 108°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)根據(jù)圖中信息回答下列問(wèn)題:
(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?
(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定:這兩種商品都打九折;乙商場(chǎng)規(guī)定:買一個(gè)暖瓶贈(zèng)送一個(gè)水杯.若某人想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問(wèn)選擇哪家商場(chǎng)購(gòu)買更合算,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 平面內(nèi),沒(méi)有公共點(diǎn)的兩條線段平行
B. 平面內(nèi),沒(méi)有公共點(diǎn)的兩條射線平行
C. 沒(méi)有公共點(diǎn)的兩條直線互相平行
D. 互相平行的兩條直線沒(méi)有公共點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題情境】
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長(zhǎng)為多少時(shí),它的周長(zhǎng)
最小?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長(zhǎng)為x,周長(zhǎng)為y,則y與x的函數(shù)表達(dá)式為y=2(x+ )(x>0).
【探索研究】
小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+ 的圖象性質(zhì).
(1)結(jié)合問(wèn)題情境,函數(shù)y=x+ 的自變量x的取值范圍是x>0,如表是y與x的幾組對(duì)應(yīng)值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①寫出m的值;
②畫出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x=時(shí),y有最小值,y最小=;
(2)【解決問(wèn)題】
直接寫出“問(wèn)題情境”中問(wèn)題的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,a)、B(b,0)、C(c,0),且=0.
(1)直接寫出 A、B、C 各點(diǎn)的坐標(biāo):A_______;B__________;C_____;
(2)過(guò) B 作直線 MN⊥AB,P 為線段 OC 上的一動(dòng)點(diǎn),AP⊥PH 交直線 MN 于點(diǎn) H,證明:PA=PH.
(3)在(1)的條件下,若在點(diǎn) A 處有一個(gè)等腰 Rt△APQ 繞點(diǎn) A 旋轉(zhuǎn),且 AP=PQ,∠APQ=90°,連接 BQ,點(diǎn) G 為 BQ 的中點(diǎn),試猜想線段 OG 與線段 PG 的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD、AE分別是△ABC的高和角平分線,∠B=30°,∠C=70°,分別求:
(1)∠BAC的度數(shù);
(2)∠AED的度數(shù);
(3)∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是某新建廠區(qū)示意圖,∠A=75°,∠B=45°,BC⊥CD,AB=500 米,AD=200米,現(xiàn)在要在廠區(qū)四周建圍墻,求圍墻的長(zhǎng)度有多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com