【題目】如圖有兩個(gè)邊長(zhǎng)為4cm的正方形,其中一個(gè)正方形的頂點(diǎn)在另一個(gè)正方形的中心上,繞著中心旋轉(zhuǎn)其中一個(gè)正方形,那么圖中陰影部分的面積是( 。

A. 無(wú)法確定B. 8cm2C. 16cm2D. 4cm2

【答案】D

【解析】

如圖,根據(jù)正方形的性質(zhì)得ODOC,∠ODA=∠OCD45°,∠DOC90°,再利用等角的余角相等得到∠DOE=∠COF,于是可根據(jù)“ASA”證明△ODE≌△OCF,

SODESOCF,所以S四邊形EOFDSDOCS正方形ABCD

解:如圖,

∵四邊形ABCD為正方形,

ODOC,∠ODA=∠OCD45°,∠DOC90°,

而∠POM90°,

即∠DOF+COF90°,∠DOE+DOF90°,

∴∠DOE=∠COF,

在△ODE和△OCF中,

∴△ODE≌△OCFASA),

SODESOCF

S四邊形EOFDSDOCS正方形ABCD×424cm2).

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4cm,B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA﹣AC方向運(yùn)動(dòng)到點(diǎn)C停止,若△BPQ的面積為y(cm2),運(yùn)動(dòng)時(shí)間為x(s),則下列最能反映yx之間函數(shù)關(guān)系的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過(guò)點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點(diǎn),點(diǎn)P是拋物線上不與A,B重合的一個(gè)動(dòng)點(diǎn),點(diǎn)Qy軸上的一個(gè)動(dòng)點(diǎn).

1)請(qǐng)直接寫(xiě)出a,k,b的值及關(guān)于x的不等式ax2kx2的解集;

2)當(dāng)點(diǎn)P在直線AB上方時(shí),請(qǐng)求出△PAB面積的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);

3)是否存在以PQ,A,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出PQ的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°BCAC,點(diǎn) D AB 上,DEAB BC E,點(diǎn) F AE 的中點(diǎn)

1 寫(xiě)出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;

3 BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC4,BE2,直接寫(xiě)出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB⊙O的直徑,∠ACB的平分線交⊙OD,連接ADBD,過(guò)點(diǎn)DDPABCA的延長(zhǎng)線于P

1)求證:PD⊙O的切線;

2)當(dāng)AC6BC8時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫(xiě)出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點(diǎn)C0,2),它的頂點(diǎn)為D1,m),且.

1)求m的值及拋物線的表達(dá)式;

2)將此拋物線向上平移后與x軸正半軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=OB.若點(diǎn)A是由原拋物線上的點(diǎn)E平移所得,求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,點(diǎn)P是拋物線對(duì)稱軸上的一點(diǎn)(位于x軸上方),且APB=45°.求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖①,②,在矩形ABCD中,AB=4BC=8,P,Q分別是邊BC,CD上的點(diǎn).

(1)如圖①,若APPQ,BP=2,求CQ的長(zhǎng);

(2)如圖②,若=2,且E,FG分別為AP,PQ,PC的中點(diǎn),求四邊形EPGF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案