【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點(diǎn)B,AC邊上一點(diǎn)O,⊙O經(jīng)過(guò)點(diǎn)B、C,與AC交于點(diǎn)D,與CE交于點(diǎn)F,連結(jié)BF。
(1)求證:AE是⊙O的切線;
(2)若,AE=8,求⊙O的半徑;
(3)在(2)條件下,求BF的長(zhǎng)。
【答案】(1)證明見(jiàn)解析 (2) (3)
【解析】
(1) 連接OB,根據(jù)OB=OC得出∠1=∠2,再根據(jù)CB平分∠ACE,得出∠2=∠3,再利用平行線的性質(zhì)求解即可;(2) 連接DF,根據(jù)同弧所對(duì)圓周角相等得出∠CDF=∠CBF,再利用直徑所對(duì)的圓周角為90°,得出∠DFC=90°,由OB//CE,得出△AOB∽△ACE,利用相似三角形的性質(zhì),列出方程求解即可;(3) 先證出△ACB∽△BCF,再利用相似三角形的性質(zhì)得出=,進(jìn)而求出結(jié)果.
(1)證明:如圖1,連接OB,
∵OB=OC,∴∠1=∠2,
∵CB平分∠ACE,∴∠2=∠3,
∴∠1=∠3,∴OB∥CE,
∴∠ABO=∠AEC=90°,即OB丄AE,
∴AE是⊙0的切線;
(2)如圖2,連接DF,
∵∠CDF和∠CBF是同弧所對(duì)圓周角,
∴∠CDF=∠CBF,
∵CD是⊙O的直徑,∴∠DFC=90°,
∴DF//AE,∴∠A=∠CDF,∴∠A=∠CBF,
∵cos∠CBF=,∴cosA=,
在Rt△ACE中AE=8,∴AC=10,CE=6,
由(1)可知OB//CE,∴△AOB∽△ACE,
∴,
設(shè)⊙O的半徑為x,則,
解得x=,∴⊙O的半徑為;
(3)在Rt△AOB中AO=10-=,cos A=,∴AB=5,
在Rt△DCF中CD=,cos∠CDF=cos∠CBF=,∴CF=,
∵∠A=∠CBF,∠2=∠3,
∴△ACB∽△BCF,
∴=,
∴,
解得,BC=,BF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:
如圖①菱形ABCD中,AB=4,∠ABC=60°點(diǎn)0是菱形ABCD兩條對(duì)角線的交點(diǎn),EF是經(jīng)過(guò)點(diǎn)O的任意一條線段,容易知道線段EF將菱形ABCD的面積等分,那么線段EF的長(zhǎng)度的最大值是 ,最小值是 。
問(wèn)題探究:
如圖② 四邊形ABCD中,AD∥BC,AD=2,BC=4,∠B=∠C=60°,請(qǐng)你過(guò)點(diǎn)D畫(huà)出將四邊形ABCD面積平分的線段DE,并求出DE的長(zhǎng)。
問(wèn)題解決:
如圖③.四邊形ABCD是西安城區(qū)改造過(guò)程中一塊不規(guī)則空地,為了美化環(huán)境,市規(guī)劃辦決定在這塊地里種兩種花棄,打算過(guò)點(diǎn)C修一條筆直的通道,以方便市民出行和觀賞花卉,并要求通道兩側(cè)種植的花卉面積相等,經(jīng)測(cè)量AB=20米,AD=100米,∠A=60°,∠ABC=150°,∠BCD=120°,若將通道記為CF,請(qǐng)你畫(huà)出通道CF,并求出通道CF的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知拋物線 與x 軸交于A ,B 兩點(diǎn),與y 軸交于點(diǎn)C ,點(diǎn)B 的坐標(biāo)為(3,0) ,拋物線的對(duì)稱(chēng)軸x=2 交x 軸于點(diǎn)E .
(1) 求交點(diǎn)A 的坐標(biāo)及拋物線的函數(shù)關(guān)系式;
(2) 在平面直角坐標(biāo)系xOy 中是否存在點(diǎn)P ,使點(diǎn)P 與A ,B ,C 三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P 坐標(biāo):若不存在,請(qǐng)說(shuō)明理由;
(3) 連接CB 交拋物線對(duì)稱(chēng)軸于點(diǎn)D ,在拋物線上是否存在一點(diǎn)Q ,使得直線CQ 把四邊形 分成面積比為1:7 的兩部分?若存在,請(qǐng)求出點(diǎn)Q 坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019中國(guó)北京世界園藝博覽會(huì)于2019年4月29日至10月7日在北京市延慶區(qū)舉辦,預(yù)售期門(mén)票價(jià)然有“平日票”和“推定日票”兩種,其中平日票的單價(jià)比指定日票的單價(jià)少40元1張:某學(xué)校計(jì)劃組織學(xué)生去參觀,用9600元購(gòu)買(mǎi)的平日票的票數(shù)與用12800元購(gòu)買(mǎi)的旅定日票的票數(shù)相等.
(1)求該學(xué)校購(gòu)買(mǎi)的平日票、指定日票的單價(jià)分別是多少元?
(2)若兩種票共購(gòu)買(mǎi)了200張,且購(gòu)買(mǎi)的總費(fèi)用是28800元,求購(gòu)買(mǎi)了多少?gòu)埰饺掌保?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱(chēng)軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則:①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當(dāng)y>0時(shí),﹣l<x<3,其中正確的是( 。
A.①②④B.②④C.①④D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x+1的圖象l與y軸交于點(diǎn)C,A1的坐標(biāo)為(1,0),點(diǎn)B1在直線l上,且A1B1平行于y軸,連接CA1、OB1交于點(diǎn)P1,過(guò)點(diǎn)A1作A1B2∥OB1交直線l于點(diǎn)B2,過(guò)點(diǎn)B1作B1A2∥CA1交x軸于點(diǎn)A2,A1B2與B1A2交于點(diǎn)P2,……,按此進(jìn)行下去,則點(diǎn)P2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店為了迎接“讀書(shū)節(jié)”制定了活動(dòng)計(jì)劃,以下是活動(dòng)計(jì)劃書(shū)的部分信息:
“讀書(shū)節(jié)”活動(dòng)計(jì)劃書(shū) | ||
書(shū)本類(lèi)別 | A類(lèi) | B類(lèi) |
進(jìn)價(jià)(單位:元) | 18 | 12 |
備注 | 1.用不超過(guò)16800元購(gòu)進(jìn)A,B兩類(lèi)圖書(shū)共1000本; 2.A類(lèi)圖書(shū)不少于600本; …… |
(1)陳經(jīng)理查看計(jì)劃數(shù)時(shí)發(fā)現(xiàn):A類(lèi)圖書(shū)的標(biāo)價(jià)是B類(lèi)圖書(shū)標(biāo)價(jià)的1.5倍,若顧客用540元購(gòu)買(mǎi)圖書(shū),能單獨(dú)購(gòu)買(mǎi)A類(lèi)圖書(shū)的數(shù)量恰好比單獨(dú)購(gòu)買(mǎi)B類(lèi)圖書(shū)的數(shù)量少10本,請(qǐng)求出A,B兩類(lèi)圖書(shū)的標(biāo)價(jià);
(2)經(jīng)市場(chǎng)調(diào)查后,陳經(jīng)理發(fā)現(xiàn)他們高估了“讀書(shū)節(jié)”對(duì)圖書(shū)銷(xiāo)售的影響,便調(diào)整了銷(xiāo)售方案,A類(lèi)圖書(shū)每本標(biāo)價(jià)降低a元(0<a<5)銷(xiāo)售,B類(lèi)圖書(shū)價(jià)格不變,那么書(shū)店應(yīng)如何進(jìn)貨才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與半徑AC相切于點(diǎn)E,與邊BC、AB分別相交于點(diǎn)D、F,且DE=EF.
⑴求證:∠C=90o;
⑵當(dāng)BC=2,sinA=時(shí),求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“三農(nóng)”問(wèn)題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計(jì)圖.依據(jù)統(tǒng)計(jì)圖得出的以下四個(gè)結(jié)論正確的是( 。
A. ①的收入去年和前年相同
B. ③的收入所占比例前年的比去年的大
C. 去年②的收入為2.8萬(wàn)
D. 前年年收入不止①②③三種農(nóng)作物的收入
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com