【題目】某校九年級學(xué)生開展踢毽子比賽活動,每班派5名學(xué)生參加,按團體總分多少排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100個)為優(yōu)秀.下表是成績最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個):

1

2

3

4

5

總成績

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

經(jīng)統(tǒng)計發(fā)現(xiàn)兩班總成績相等,只好將數(shù)據(jù)中的其他信息作為參考.根據(jù)要求回答下列問題:

1)計算兩班的優(yōu)秀率;

2)求兩班比賽數(shù)據(jù)的中位數(shù);

3)求兩班比賽數(shù)據(jù)的方差;

4)根據(jù)以上三條信息,你認為應(yīng)該把冠軍獎狀發(fā)給哪一個班級?簡述理由.

【答案】(1)60%;40%;(2)甲班比賽數(shù)據(jù)的中位數(shù)是100,乙班比賽數(shù)據(jù)的中位數(shù)是97;(3)46.8;103.2;(4)應(yīng)把冠軍獎狀給甲班.

【解析】

1)確定兩個班級優(yōu)秀的人數(shù),利用優(yōu)秀率計算公式即可得到答案;

2)將兩個班級的成績由低到高重新排列,中間的數(shù)即為中位數(shù);

3)根據(jù)方差公式計算即可;

4)將優(yōu)秀率、中位數(shù)、方差進行比較即可得到答案.

1)甲班踢100個以上(含100個)的人數(shù)是3,則優(yōu)秀率是60%;

乙班踢100個以上(含100個)的人數(shù)是2,則優(yōu)秀率是40

2)甲班比賽數(shù)據(jù)的中位數(shù)是100,乙班比賽數(shù)據(jù)的中位數(shù)是97.

3)因為兩班的總分均為500,所以平均數(shù)都為100.

=[1001002+981002+1101002+891002+1031002]=46.8;

=[891002+1001002+951002+1191002+971002]=103.2.

4)應(yīng)把冠軍獎狀給甲班.

理由:甲班的優(yōu)秀率、中位數(shù)都高于乙班,甲班的方差小于乙班,說明甲班成績更穩(wěn)定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,平分交于點.

1)求證:;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是邊長為的正方形,以為直徑向正方形內(nèi)作半圓,為半圓上一動點(不與、重合),當(dāng)________時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為矩形ABCD對角線交點,,,點E、F、G分別從D,C,B三點同時出發(fā),沿矩形的邊DC、CB、BA勻速運動,點E的運動速度為,點F的運動速度為,點G的運動速度為,當(dāng)點F到達點點F與點B重合時,三個點隨之停止運動在運動過程中,關(guān)于直線EF的對稱圖形是設(shè)點E、F、G運動的時間為單位:

當(dāng)______s時,四邊形為正方形;

若以點E、C、F為頂點的三角形與以點F、B、G為頂點的三角形相似,求t的值;

是否存在實數(shù)t,使得點與點O重合?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃購進一批甲、乙兩種玩具,已知件甲種玩具的進價與件乙種玩具的進價的和為元,件甲種玩具的進價與件乙種玩具的進價的和為元.

1)求每件甲種、乙種玩具的進價分別是多少元;

2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過件,超出部分可以享受折優(yōu)惠,若購進件甲種玩具需要花費元,請你寫出的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與的圖像交于點,與軸和 軸分別交于點和點,且點的橫坐標為.

(1)的值與的長;

(2)若點為線段上一點,且,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB90°,∠A1=∠A30°

1)將圖1A1B1C繞點C順時針旋轉(zhuǎn)45°得圖2,點P1A1CAB的交點,點QA1B1BC的交點,求證:CP1CQ;

2)在圖2中,若AP1a,則CQ等于多少?

3)將圖2A1B1CC順時針旋轉(zhuǎn)到A2B2C(如圖3),點P2A2CAP1的交點.當(dāng)旋轉(zhuǎn)角為多少度時,有AP1C∽△CP1P2?這時線段CP1P1P2之間存在一個怎樣的數(shù)量關(guān)系?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人兩次同時在同一家超市采購貨物(假設(shè)兩次采購貨物的單價不相同),甲每次采購貨物100千克,乙每次采購貨物用去100元.

1)假設(shè)ab分別表示兩次采購貨物時的單價(單位:元/千克),試用含a、b的式子表示:甲兩次采購貨物共需付款   元,乙兩次共購買   千克貨物.

2)請你判斷甲、乙兩人采購貨物的方式哪一個的平均單價低,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,DEAB的垂直平分線,AD恰好平分∠BAC.若DE1,則BC的長是_____

查看答案和解析>>

同步練習(xí)冊答案