【題目】如圖,一次函數(shù)的圖像與的圖像交于點(diǎn),與軸和 軸分別交于點(diǎn)和點(diǎn),且點(diǎn)的橫坐標(biāo)為.

(1)的值與的長(zhǎng);

(2)若點(diǎn)為線段上一點(diǎn),且,求點(diǎn)的坐標(biāo).

【答案】(1) ,;(2) .

【解析】

(1)把點(diǎn)C的橫坐標(biāo)代入正比例函數(shù)解析式,求得點(diǎn)C的縱坐標(biāo),然后把點(diǎn)C的坐標(biāo)代入一次函數(shù)解析式即可求得m的值,從而得到一次函數(shù)的解析式,則易求點(diǎn)A、B的坐標(biāo),然后根據(jù)勾股定理即可求得AB;
(2)由得到OQ的長(zhǎng),即可求得Q點(diǎn)的坐標(biāo).

(1)∵點(diǎn)C在直線上,點(diǎn)C的橫坐標(biāo)為3,

∴點(diǎn)C坐標(biāo)為

又∵點(diǎn)C在直線y=mx+2m+3上,

∴直線AB的函數(shù)表達(dá)式為

x=0,y=6,y=0,,解得x=4,

A(4,0)、B(0,6),

(2),

OQ=2,

∴點(diǎn)Q坐標(biāo)為(0,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鎮(zhèn)的一種特產(chǎn)由于運(yùn)輸原因,長(zhǎng)期只能在當(dāng)?shù)劁N售.當(dāng)?shù)卣畬?duì)該特產(chǎn)的銷售投資收益為:每投入x萬元,可獲得利潤(rùn)當(dāng)?shù)卣當(dāng)M在“十二五”規(guī)劃中加快開發(fā)該特產(chǎn)的銷售,其規(guī)劃方案為:在規(guī)劃前后對(duì)該項(xiàng)目每年最多可投入100萬元的銷售投資,在實(shí)施規(guī)劃5年的前兩年中,每年都從100萬元中撥出50萬元用于修建一條公路,兩年修成,通車前該特產(chǎn)只能在當(dāng)?shù)劁N售;公路通車后的3年中,該特產(chǎn)既在本地銷售,也在外地銷售.在外地銷售的投資收益為:每投入x萬元,可獲利潤(rùn)

1)若不進(jìn)行開發(fā),求5年所獲利潤(rùn)的最大值是多少?

2)若按規(guī)劃實(shí)施,求5年所獲利潤(rùn)(扣除修路后)的最大值是多少?

3)根據(jù)(1)、(2),該方案是否具有實(shí)施價(jià)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,點(diǎn),分別在上,且為等邊三角形,下列結(jié)論:

;②;③;④

其中正確的結(jié)論個(gè)數(shù)有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如圖擺放(點(diǎn)重合),點(diǎn)、在同一條直線上.已知:,,,.如圖從圖的位置出發(fā),以的速度沿勻速移動(dòng),在移動(dòng)的同時(shí),點(diǎn)的頂點(diǎn)出發(fā),以的速度沿向點(diǎn)勻速移動(dòng);當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),點(diǎn)停止移動(dòng),也隨之停止移動(dòng).交于點(diǎn),連接,設(shè)移動(dòng)時(shí)間為

用含的代數(shù)式表示線段的長(zhǎng),并寫出的取值范圍;

當(dāng)為何值時(shí),是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)學(xué)生開展踢毽子比賽活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總分多少排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100個(gè))為優(yōu)秀.下表是成績(jī)最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個(gè)):

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

總成績(jī)

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)兩班總成績(jī)相等,只好將數(shù)據(jù)中的其他信息作為參考.根據(jù)要求回答下列問題:

1)計(jì)算兩班的優(yōu)秀率;

2)求兩班比賽數(shù)據(jù)的中位數(shù);

3)求兩班比賽數(shù)據(jù)的方差;

4)根據(jù)以上三條信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班級(jí)?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點(diǎn)D在線段BC上運(yùn)動(dòng).試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC4,BC3CDx,求線段CP的長(zhǎng).(用含x的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BB1∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;

(2)當(dāng)△DEG與△ACB相似時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,ACBD交于點(diǎn)E,ADB=ACB.

(1)求證:;

(2)若ABAC,AE:EC=1:2,F(xiàn)BC中點(diǎn),求證:四邊形ABFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=CBD.

(1)求證:CD是⊙O的切線.

(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若OB=5,BC=18,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案