【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.
∵AB=AC,∠BAC=90°,點(diǎn)P是BC的中點(diǎn),
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①②正確;
∵△AEP≌△CFP,同理可證△APF≌△BPE,
∴△EFP是等腰直角三角形,故③錯(cuò)誤;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣在實(shí)施“村村通”工程中,決定在A、B兩村之間修一條公路,甲、乙兩個(gè)工程隊(duì)分別從A、B兩村同時(shí)開始相向修路,施工期間,甲隊(duì)改變了一次修路速度,乙隊(duì)因另有任務(wù)提前離開,余下的任務(wù)由甲隊(duì)單獨(dú)完成,直到公路修通,甲、乙兩個(gè)工程隊(duì)各自所修公路的長度y(米)與修路時(shí)間x(天)之間的函數(shù)圖象如圖所示.
(1)求甲隊(duì)前8天所修公路的長度;
(2)求甲工程隊(duì)改變修路速度后y與x之間的函數(shù)關(guān)系式;
(3)求這條公路的總長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】思考:填空,并探究規(guī)律
如圖1,圖2,OA∥EC,OB∥ED,∠AOB=30°,則圖1中∠CED=_____°;圖2中∠CED=_____°;用一句話概括你發(fā)現(xiàn)的規(guī)律_________________.
應(yīng)用:已知∠AOB=80°,∠CED=x°,OA∥CE,OB∥ED,則x的值為_________(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=9,AB的垂直平分線交BC與點(diǎn)M,AC的垂直平分線交BC于點(diǎn)N,則△AMN的周長=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,線段cm,點(diǎn)C從點(diǎn)P出發(fā)以1cm/s的速度沿AB向左運(yùn)動(dòng),點(diǎn)D從點(diǎn)B出發(fā)以2cm/s的速度沿AB向左運(yùn)動(dòng)(點(diǎn)C在線段AP上,D在線段BP上)
(1)若C,D 運(yùn)動(dòng)到任意時(shí)刻都有PD=2AC,試說明PB=2AP;
(2)在(1)的條件下,Q是直線AB上一點(diǎn),若AQ-BQ=PQ,求PQ的值;
(3)在(1)的條件下,若C,D運(yùn)動(dòng)了一段時(shí)間后恰有AB=2CD,這時(shí)點(diǎn)C停止運(yùn)動(dòng),點(diǎn)D繼續(xù)在線段PB上運(yùn)動(dòng),M,N 分別是CD,PD的中點(diǎn),求MN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠DAB=60°,E為BC的中點(diǎn),在對(duì)角線AC上存在一點(diǎn)P,使△PBE的周長最小,則△PBE的周長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(m,n),且滿足m-2+(n-2)2=0,過A作AB⊥y軸,垂足為B.
(1)求A點(diǎn)坐標(biāo);
(2)如圖1,分別以AB,AO為邊作等邊△ABC和△AOD,試判定線段AC和DC的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(3)如圖2,過A作AE⊥x軸,垂足為E,點(diǎn)F、G分別為線段OE、AE上的兩個(gè)動(dòng)點(diǎn) (不與端點(diǎn)重合),滿足∠FBG=45°,設(shè)OF=a,AG=b,FG=c,試探究的值是 否為定值?如果是,直接寫出此定值:如果不是,請(qǐng)舉例說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現(xiàn)有兩點(diǎn)P,Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),沿邊AB,CB向終點(diǎn)B移動(dòng).其中點(diǎn)P,Q的速度分別為2cm/s,1cm/s,且當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止移動(dòng).設(shè)P,Q兩點(diǎn)移動(dòng)時(shí)間為x s.
(1)用含x的代數(shù)式表示BQ、BP的長度,并求x的取值范圍.
(2)設(shè)四邊形APQC的面積為y(cm2),求y與x的函數(shù)關(guān)系式?
(3)是否存在這樣的x,使得四邊形APQC的面積是△ABC面積的 ?如果存在,求出x的值;不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C
處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com