解:(1)①如圖①,分別過(guò)點(diǎn)M,N作ME⊥AB,NF⊥AB,垂足分別為點(diǎn)E,F(xiàn)
∵AD∥BC,AD=BC,
∴四邊形ABCD為平行四邊形;
∴AB∥CD;
∴ME=NF;
∵S
△ABM=
ABAB•ME,S
△ABN=
ABAB•NF,
∴S
△ABM=S
△ABN.
②相等.理由如下:如圖②,分別過(guò)點(diǎn)D,E作DH⊥AB,EK⊥AB,垂足分別為H,K.
則∠DHA=∠EKB=90°.
∵AD∥BE,∴∠DAH=∠EBK.
∵AD=BE,
∴△DAH≌△EBK.∴DH=EK.
∵CD∥AB∥EF,
∴S
△ABM=
,S
△ABG=
,
∴S
△ABM=S
△ABG.
(2)答:存在.
因?yàn)閽佄锞的頂點(diǎn)坐標(biāo)是C(1,4),所以,可設(shè)拋物線的表達(dá)式為y=a(x-1)
2+4.
又因?yàn)閽佄锞經(jīng)過(guò)點(diǎn)A(3,0),將其坐標(biāo)代入上式,得0=a(3-1)
2+4,解得a=-1.
∴該拋物線的表達(dá)式為y=-(x-1)
2+4,即y=-x
2+2x+3.
∴D點(diǎn)坐標(biāo)為(0,3).
設(shè)直線AD的表達(dá)式為y=kx+3,代入點(diǎn)A的坐標(biāo),得0=3k+3,解得k=-1.
∴直線AD的表達(dá)式為y=-x+3.
過(guò)C點(diǎn)作CG⊥x軸,垂足為G,交AD于點(diǎn)H.則H點(diǎn)的縱坐標(biāo)為-1+3=2.
∴CH=CG-HG=4-2=2.
設(shè)點(diǎn)E的橫坐標(biāo)為m,則點(diǎn)E的縱坐標(biāo)為-m
2+2m+3.
過(guò)E點(diǎn)作EF⊥x軸,垂足為F,交AD于點(diǎn)P,則點(diǎn)P的縱坐標(biāo)為3-m,EF∥CG.
由﹙1﹚可知:若EP=CH,則△ADE與△ADC的面積相等.
①若E點(diǎn)在直線AD的上方,
則PF=3-m,EF=-m
2+2m+3.
∴EP=EF-PF=-m
2+2m+3-(3-m)=-m
2+3m.
∴-m
2+3m=2.
解得m
1=2,m
2=1.
當(dāng)m=2時(shí),PF=3-2=1,EF=1+2=3.
∴E點(diǎn)坐標(biāo)為(2,3).
同理 當(dāng)m=1時(shí),E點(diǎn)坐標(biāo)為(1,4),與C點(diǎn)重合.
②若E點(diǎn)在直線AD的下方,
則PE=(3-m)-(-m
2+2m+3)=m
2-3m.
∴m
2-3m=2.解得
,
.
當(dāng)
時(shí),E點(diǎn)的縱坐標(biāo)為
;
當(dāng)
時(shí),E點(diǎn)的縱坐標(biāo)為
.
∴在拋物線上存在除點(diǎn)C以外的點(diǎn)E,使得△ADE與△ACD的面積相等,E點(diǎn)的坐標(biāo)為E
1(2,3);
;
.
分析:(1)①由于CD∥AB,所以△ABM和△ABN中,AB邊上的高相等,則兩個(gè)三角形是同底等高的三角形,所以它們的面積相等;
②分別過(guò)D、E作AB的垂線,設(shè)垂足為H、K;通過(guò)證△DAH≌△EBK,來(lái)得到DH=KE;則所求的兩個(gè)三角形是同底等高的三角形,由此得證;
(2)根據(jù)A、C的坐標(biāo),即可求得拋物線的解析式,進(jìn)而可求出A、D的解析式;用待定系數(shù)法可確定直線AD的解析式;假設(shè)存在符合條件的E點(diǎn),過(guò)C作CD⊥x軸于D,交直線AD于H;過(guò)E作EF⊥x軸于F,交直線AD于P;根據(jù)拋物線的對(duì)稱軸方程及直線AD的解析式,易求得H點(diǎn)的坐標(biāo),即可得到CH的長(zhǎng);設(shè)出E點(diǎn)橫坐標(biāo),根據(jù)直線AD和拋物線的解析式,可表示出P、E的縱坐標(biāo),即可得到PE的長(zhǎng);根據(jù)(1)題得到的結(jié)論,當(dāng)PE=CH時(shí),所求的兩個(gè)三角形面積相等,由此可列出關(guān)于E點(diǎn)橫坐標(biāo)的方程,從而求出E點(diǎn)的坐標(biāo).(需注意的是E點(diǎn)可能在直線AD的上方或下方,這兩種情況下PE的表達(dá)式會(huì)有所不同,要分類討論)
點(diǎn)評(píng):此題主要考查了平行線的性質(zhì)、三角形面積的求法、全等三角形的判定和性質(zhì)、二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法等知識(shí);同時(shí)還考查了分類討論的數(shù)學(xué)思想,能力要求高,難度較大.