【題目】如圖,在中,,對角線,點E是線段BC上的動點,連接DE,過點DDPDE,在射線DP上取點F,使得,連接CF,周長的最小值為___________.

【答案】

【解析】

DDGBC于點G,過FFHDG于點H,利用tanDBC=BD=10可求出DGBG的長,然后求出CD的長,可知△DCF周長最小,即CF+DF最小,利用“一線三垂直”得到△HDF∽△GED,然后根據(jù)對應邊成比例推出FH=2GD,可知FDG右側(cè)距離2DG的直線上,作C點關(guān)于直線的對稱點C',連接DC'DC'的長即為CF+DF的最小值,利用勾股定理求出DC',則CD+DC'的長即為周長最小值.

如圖,過DDGBC于點G,過FFHDG于點H,

tanDBC=,BD=10,設DG=x,BG=2x

,解得

DG=,BG=

GC=BC-BG=

CD=

DCF周長最小,即CF+DF最小

∵∠FDE=90°

∴∠HDF+GDE=90°

∵∠GED+GDE=90°

∴∠HDF=GED

又∵∠DHF=EGD=90°

∴△HDF∽△GED

FH=2GD=

FDG右側(cè)距離的直線上運動,如圖所示,

C點關(guān)于直線的對稱點C',連接DC'DC'的長即為CF+DF的最小值

DGBC,FHDG,FOCC'

∴四邊形HFOG為矩形,

OG=HF=

又∵GC=

OC=OC'=

GC'=

RtDGC'中,DC'=

∴△DCF周長的最小值=CD+DC'=

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一位籃球運動員在離籃圈水平距離4處跳起投籃,球運行的高度)與運行的水平距離)滿足解析式,當球運行的水平距離為1.5時,球離地面高度為3.3,球在空中達到最大高度后,準確落入籃圈內(nèi).已知籃圈中心離地面距離為3.05

(1)當球運行的水平距離為多少時,達到最大高度?最大高度為多少?

(2)若該運動員身高1.8,這次跳投時,球在他頭頂上方0.25處出手,問球出手時,他跳離地面多高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明設計的“作三角形的高線”的尺規(guī)作圖過程.

已知:△ABC

求作:BC邊上的高線.

作法:如圖,

①分別以A,B為圓心,大于長為半徑畫弧,兩弧交于點D,E;

②作直線DE,與AB交于點F,以點F為圓心,FA長為半徑畫圓,交CB的延長線于點G;

③連接AG

所以線段AG就是所求作的BC邊上的高線.

根據(jù)小明設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面證明.

證明:連接DA,DBEA,EB,

DA=DB,

∴點D在線段AB的垂直平分線上( )(填推理的依據(jù)).

= ,

∴點E在線段AB的垂直平分線上.

DE是線段AB的垂直平分線.

FA=FB

AB是⊙F的直徑.

∴∠AGB=90°( )(填推理的依據(jù)).

AGBC

AG就是BC邊上的高線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD兩條對角線BDAC的長之比為3:4,周長為40cm,求菱形的高及面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點E,F分別在AB,CD上,且,連接EFBD于點O連接AO.,,則的度數(shù)為(

A.50°B.55°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近日,國產(chǎn)航母山東艦成為了新晉網(wǎng)紅,作為我國本世紀建造的第一艘真正意義上的國產(chǎn)航母,承載了我們太多期盼,促使我國在偉大復興路上加速前行如圖,山東艦在一次測試中,巡航到海島A北偏東60°方向P處,發(fā)現(xiàn)在海島A正東方向有一可疑船只B正沿BA方向行駛。山東艦經(jīng)測量得出:可疑船只在P處南偏東45°方向,距P海里。山東艦立即從P沿南偏西30°方向駛出,剛好在C處成功攔截可疑船只。求被攔截時,可疑船只距海島A還有多少海里?(,結(jié)果精確到0.1海里)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校打算用長米的籬笆圍城一個長方形的生物園飼養(yǎng)小兔,生物園的一面靠在長為米的墻上(如圖).

1)若生物園的面積為平方米,求生物園的長和寬;

2)能否圍城面積為平方米的生物園?若能,求出長和寬;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形ABCO的底邊AO軸上,,ABAO,過點C的雙曲線OBD,且,若OBC的面積等于3,則k的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種多功能兒童車,根據(jù)需要可變形為圖1的滑板車或圖2的自行車,已知前后車輪半徑相同,,車桿所成的,圖1、三點共線,圖2中的座板與地面保持平行.問變形前后兩軸心的長度有沒有發(fā)生變化?若不變,請寫出的長度;若變化,請求出變化量?(參考數(shù)據(jù):,,

查看答案和解析>>

同步練習冊答案