【題目】如圖所示是一張簡易活動餐桌,測得OA=OB=30cm,OC=OD=50cm,現(xiàn)要求桌面離地面的高度為40cm,那么兩條桌腳的張角∠COD的度數(shù)大小應(yīng)為( )
A. 100° B. 120° C. 135° D. 150°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標(biāo);
(2)在x軸上找一點P,使PA+PB的值最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,正方形ABCD和一個圓心角為45°的扇形,圓心與A點重合,此扇形繞A點旋轉(zhuǎn)時,兩半徑分別交直線BC、CD于點P.K.
(1)當(dāng)點P、K分別在邊BC.CD上時,如圖(1),求證:BP+DK=PK.
(2)當(dāng)點P、K分別在直線BC.CD上時,如圖(2),線段BP、DK、PK之間又有怎樣的數(shù)量關(guān)系,請直接寫出結(jié)論.
(3)在圖(3)中,作直線BD交直線AP、AK于M、Q兩點.若PK=5,CP=4,求PM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在10×10的正方形網(wǎng)格中,點A,B,C,D均在格點上,以點A為位似中心畫四邊形AB′C′D′,使它與四邊形ABCD位似,且相似比為2.
(1)在圖中畫出四邊形AB′C′D′;
(2)填空:△AC′D′是 三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線l1經(jīng)過點(0,4),l2經(jīng)過(3,2),且l1與l2關(guān)于x軸對稱,則l1與l2的交點坐標(biāo)為
A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表顯示了同學(xué)們用計算機模擬隨機投針實驗的某次實驗的結(jié)果.
投針次數(shù)n | 1000 | 2000 | 3000 | 4000 | 5000 | 10000 | 20000 |
針與直線相交的次數(shù)m | 454 | 970 | 1430 | 1912 | 2386 | 4769 | 9548 |
針與直線相交的頻率p=
| 0.454 | 0.485 | 0.4767 | 0.478 | 0.4772 | 0.4769 | 0.4774 |
下面有三個推斷:
①投擲1000次時,針與直線相交的次數(shù)是454,針與直線相交的概率是0.454;
②隨著實驗次數(shù)的增加,針與直線相交的頻率總在0.477附近,顯示出一定的穩(wěn)定性,可以估計針與直線相交的概率是0.477;
③若再次用計算機模擬此實驗,則當(dāng)投擲次數(shù)為10000時,針與直線相交的頻率一定是0.4769.
其中合理的推斷的序號是:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=4cm,點C為線段AB上一動點,過點C作AB的垂線交⊙O于點D,E,連結(jié)AD,AE.設(shè)AC的長為xcm,△ADE的面積為ycm2.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小東的探究過程,請補充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點、畫圖、測量、分析,得到了y與x的幾組對應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 |
| 4.8 | 5.2 | 4.6 | 0 |
(3)如圖,建立平面直角坐標(biāo)系xOy,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△ADE的面積為4cm2時,AC的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c與直線y=﹣x+m相交于第一象限內(nèi)不同的兩點A(4,n),B(1,4),
(1)求此拋物線的解析式.
(2)拋物線上是否存點P,使直線OP將線段AB平分?若存在直接求出P點坐標(biāo);若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF;
②當(dāng)AB=4,AD=時,求線段BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com