【題目】已知△ABC內(nèi)接于⊙O,過點A作直線EF.
(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個條件是(至少說出兩種): 或者 .
(2)如圖②所示,如果AB是不過圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BF交AC于點M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射手在同一條件下進行射擊,結(jié)果如下表所示:
(1)計算并填寫表中擊中靶心的頻率;(結(jié)果保留三位小數(shù))
(2)這個射手射擊一次,擊中靶心的概率估計值是多少?(結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解學(xué)生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1500名學(xué)生中,隨機抽取了若干名學(xué)生進行調(diào)查(每人只能在這五種球類運動中選擇一種).調(diào)查結(jié)果統(tǒng)計如下:
球類名稱 | 人數(shù) |
乒乓球 | 42 |
羽毛球 | a |
排球 | 15 |
籃球 | 33 |
足球 | b |
解答下列問題:
(1)這次抽樣調(diào)查中的樣本是________;
(2)統(tǒng)計表中,a=________,b=________;
(3)試估計上述1500名學(xué)生中最喜歡乒乓球運動的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解同學(xué)們的身體發(fā)育情況,學(xué)校體衛(wèi)辦公室對七年級全體學(xué)生進行了身高測量(精確到1cm),并從中抽取了部分數(shù)據(jù)進行統(tǒng)計,請根據(jù)尚未完成的頻數(shù)分布表和頻數(shù)分布直方圖解答下列問題:
頻率分布表
分組 | 頻數(shù) | 百分比 |
144.5~149.5 | 2 | 4% |
149.5~154.5 | 3 | 6% |
154.5~159.5 | a | 16% |
159.5~164.5 | 17 | 34% |
164.5~169.5 | b | n% |
169.5~174.5 | 5 | 10% |
174.5~179.5 | 3 | 6% |
(1)求a、b、n的值;
(2)補全頻數(shù)分布直方圖;
(3)學(xué)校準備從七年級學(xué)生中選拔護旗手,要求身高不低于170cm,如果七年級有學(xué)生350人,護旗手的候選人大概有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當t= 分鐘時甲乙兩人相遇,甲的速度為 米/分鐘,乙的速度為 米/分鐘;
(2)圖中點A的坐標為 ;
(3)求線段AB所直線的函數(shù)表達式;
(4)在整個過程中,何時兩人相距400米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如左圖,某小區(qū)的平面圖是一個400×300平方米的矩形,正中央的建筑區(qū)是與整個小區(qū)長寬比例相同的矩形.如果要使四周的空地所占面積是小區(qū)面積的36%,并且南北空地與東西空地的寬度各自相同.
(1)求該小區(qū)南北空地的寬度;
(2)如右圖,該小區(qū)在東西南三塊空地上做如圖所示的矩形綠化帶,綠化帶與建筑區(qū)之間為小區(qū)道路,小區(qū)道路寬度一致.已知東西側(cè)綠化帶完全相同,其長約為200米,南側(cè)綠化帶的長為300米,綠化面積為18000平方米,請求出小區(qū)道路的寬度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項工程甲隊單獨完成所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由乙隊先做45天,剩下的工程再由甲、乙兩隊合作54天可以完成。
(1)求甲、乙兩隊單獨完成這項工程各需要多少天?
(2)已知甲隊每天的施工費用為0.82萬元,乙隊每天的施工費用為0.68萬元,工程預(yù)算的施工費用為100萬元.擬安排甲、乙兩隊同時合作完成這項工程,則工程預(yù)算的施工費用是否夠用?若不夠用,需追加預(yù)算多少萬元?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的 ⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F.
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com