【題目】.如圖,矩形ABCD中,OAC中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)分別與AB、CD交于點(diǎn)E、F,連結(jié)BFAC于點(diǎn)M,連結(jié)DEBO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC②△EOB≌△CMB;③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】C

【解析】試題分析:利用線(xiàn)段垂直平分線(xiàn)的性質(zhì)的逆定理可得結(jié)論;△OMB≌△OEB△EOB≌△CMB;

先證△BEF是等邊三角形得出BF=EF,再證DEBF得出DE=BF,所以得DE=EF可知△BCM≌△BEO,則面積相等,△AOE△BEO屬于等高的兩個(gè)三角形,其面積比就等于兩底的比,即SAOESBOE=AEBE,由直角三角形30°角所對(duì)的直角邊是斜邊的一半得出BE=2OE=2AE,得出結(jié)論SAOESBOE=AEBE=12

①∵矩形ABCD中,OAC中點(diǎn), ∴OB=OC, ∵∠COB=60°, ∴△OBC是等邊三角形, ∴OB=BC

∵FO=FC, ∴FB垂直平分OC, 故正確;

②∵FB垂直平分OC∴△CMB≌△OMB, ∵OA=OC,∠FOC=∠EOA∠DCO=∠BAO, ∴△FOC≌△EOA,

∴FO=EO, 易得OB⊥EF, ∴△OMB≌△OEB∴△EOB≌△CMB, 故正確;

△OMB≌△OEB≌△CMB∠1=∠2=∠3=30°BF=BE, ∴△BEF是等邊三角形, ∴BF=EF,

∵DF∥BEDF=BE四邊形DEBF是平行四邊形, ∴DE=BF, ∴DE=EF, 故正確;

在直角△BOE∵∠3=30°∴BE=2OE, ∵∠OAE=∠AOE=30°∴AE=OE, ∴BE=2AE

∴SAOESBCM=SAOESBOE=12, 故錯(cuò)誤;

所以其中正確結(jié)論的個(gè)數(shù)為3個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABD和△ACE中,AB=AD,AC=AE,BAD=CAE,連接BC、DE相交于點(diǎn)FBCAD相交于點(diǎn)G

1)試判斷線(xiàn)段BC、DE的數(shù)量關(guān)系,并說(shuō)明理由;

2)若BC平分∠ABD,求證線(xiàn)段FD是線(xiàn)段FG FB的比例中項(xiàng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點(diǎn)D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用工件槽(如圖1)可以檢測(cè)一種鐵球的大小是否符合要求,已知工件槽的兩個(gè)底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時(shí),若同時(shí)具有圖1所示的A、BE三個(gè)接觸點(diǎn),該球的大小就符合要求.圖2是過(guò)球心OA、BE三點(diǎn)的截面示意圖,求這種鐵球的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】材料:在學(xué)習(xí)絕對(duì)值時(shí),老師教過(guò)我們絕對(duì)值的幾何含義,表示、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示在數(shù)軸上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,一般地,點(diǎn)、在數(shù)軸上分別表示有理數(shù)、,那么之間的距離可表示為

)點(diǎn)、、在數(shù)軸上分別表示有理數(shù)、,那么的距離表示為______________________________(用含絕對(duì)值的式子表示).如果,那么______________________________

)利用數(shù)軸探究:

①找出滿(mǎn)足的所有整數(shù)值是____________________

②設(shè),當(dāng)的值取在不小于且不大于的范圍時(shí),的值是不變的,而且是的最小值,這個(gè)最小值是____________________;

)求的最小值為____________________,此時(shí)的值為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形 ABC (頂點(diǎn)是網(wǎng)格線(xiàn)交點(diǎn)的三角形)的頂點(diǎn) A ,C 的坐標(biāo)分別是(-4 ,6) ,(-14)

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫(huà)出△ABC 關(guān)于 x 軸對(duì)稱(chēng)的△A1B1C1 ;并直接寫(xiě)出A1B1C1的坐標(biāo).

(3)請(qǐng)?jiān)?/span> y 軸上求作一點(diǎn) P ,使△PB1C 的周長(zhǎng)最小,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天,小明和小紅玩紙片拼圖游戲.發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些圖形來(lái)解釋某些等式,比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2

1)圖③可以解釋為等式:    

2)圖④中陰影部分的面積為    .觀察圖④請(qǐng)你寫(xiě)出(a+b)2、(ab)2ab之間的等量關(guān)系是    

3)如圖⑤,小明利用7個(gè)長(zhǎng)為b,寬為a的長(zhǎng)方形拼成如圖所示的大長(zhǎng)方形;若AB=4,若長(zhǎng)方形AGMB的面積與長(zhǎng)方形EDHN的面積的差為S,試計(jì)算S的值(用含ab的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在去年底以每件80元的進(jìn)價(jià)購(gòu)進(jìn)一批同型號(hào)的服裝,一月份以每件150元的售價(jià)銷(xiāo)售了320件,二、三月份該服裝暢銷(xiāo),銷(xiāo)量持續(xù)走高,在售價(jià)不變的情況下,三月底統(tǒng)計(jì)知三月份的銷(xiāo)量達(dá)到了500件.

1)求二、三月份服裝銷(xiāo)售量的平均月增長(zhǎng)率;

2)從四月份起商場(chǎng)因換季清倉(cāng)采用降價(jià)促銷(xiāo)的方式,經(jīng)調(diào)查發(fā)現(xiàn),在三月份銷(xiāo)量的基礎(chǔ)上,該服裝售價(jià)每降價(jià)5元,月銷(xiāo)售量增加10件,當(dāng)每件降價(jià)多少元時(shí),四月份可獲利12000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A作直線(xiàn)EF

1)如圖所示,若AB⊙O的直徑,要使EF成為⊙O的切線(xiàn),還需要添加的一個(gè)條件是(至少說(shuō)出兩種): 或者

2)如圖所示,如果AB是不過(guò)圓心O的弦,且∠CAE=∠B,那么EF⊙O的切線(xiàn)嗎?試證明你的判斷.

查看答案和解析>>

同步練習(xí)冊(cè)答案