【題目】先閱讀理解下面的例題,再按要求解答下列問(wèn)題: 同學(xué)們,我們把學(xué)習(xí)新的數(shù)學(xué)知識(shí)的時(shí)候,經(jīng)常利用“化歸“的數(shù)學(xué)思想方法解決問(wèn)題,比如,我們?cè)趯W(xué)習(xí)二元一次方程組的解法時(shí),是通過(guò)“消元”的方法將二元方程化歸成我們所 熟悉的一元方程,從而正確求解.下面我們就利用“化歸”的數(shù)學(xué)方法解決新的問(wèn)題. 首先,我們把像這樣,只含有一個(gè)未知數(shù),并且未知教的最高次數(shù)是的不等式,稱(chēng)為一元二次不等式.通過(guò)以前的學(xué)習(xí),我們已經(jīng)認(rèn)識(shí)了一無(wú)一次不等式、一元一次不等式組并掌握 了它們的解法.同學(xué)們,你們能類(lèi)比一元一次不等式(組)的解法求出一元二次不等式的解 集嗎? 例題:解一元二次不等式為了解決這個(gè)問(wèn)題,我們需要將一元二次不等式“化歸”到一元一次不等式(組),通過(guò)平方差公式的逆用,我們可以把寫(xiě)成的形式,從面將轉(zhuǎn)化為,然后再利用兩數(shù)相乘的符號(hào)性質(zhì)將一元二次不等式轉(zhuǎn)化成一元一次不等式(組),從而解決問(wèn)題.
解:
可化為
由有理數(shù)的乘法法則“兩數(shù)相乘,同號(hào)得正”,得①②
解不等式組①,
解不等式組②,
即一元二次不等式的解集為
拓展應(yīng)用:
求一元二次不等式的解集.
求分式不等式的解集.
求一元二次不等式的解集.
【答案】(1)x>4或x<-4;(2);(3)0<x<.
【解析】
(1)由題意將一元二次不等式的左邊因式分解后化為兩個(gè)一元一次不等式組求解即可;
(2)根據(jù)分式不等式大于零可以得到其分子、分母同號(hào),從而轉(zhuǎn)化為兩個(gè)一元一次不等式組求解即可;
(3)根據(jù)題意將一元二次不等式的左邊因式分解后化為兩個(gè)一元一次不等式組求解即可.
解:(1)∵x2-16=(x+4)(x-4)
∴x2-16>0可化為
(x+4)(x-4)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號(hào)得正”,得①②,
解不等式組①,得x>4,
解不等式組②,得x<-4,
∴(x+4)(x-4)>0的解集為x>4或x<-4,
即一元二次不等式x2-16>0的解集為x>4或x<-4.
(2)∵
∴或
解得:.
(3)∵2x2-3x=x(2x-3)
∴2x2-3x<0可化為 x(2x-3)<0
由有理數(shù)的乘法法則“兩數(shù)相乘,異號(hào)得負(fù)”,得或,
解不等式組①,得0<x<,
解不等式組②,無(wú)解,
∴不等式2x2-3x<0的解集為0<x<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初中學(xué)校欲向高一級(jí)學(xué)校推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級(jí)200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計(jì)如圖一:
其次,對(duì)三名候選人進(jìn)行了筆試和面試兩項(xiàng)測(cè)試.各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>
測(cè)試項(xiàng)目 | 測(cè)試成績(jī)/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
圖二是某同學(xué)根據(jù)上表繪制的一個(gè)不完全的條形圖.
請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:
(1)補(bǔ)全圖一和圖二;
(2)請(qǐng)計(jì)算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項(xiàng)得分按照2:5:3的比確定,計(jì)算三名候選人的平均成績(jī),成績(jī)高的將被錄取,應(yīng)該錄取誰(shuí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
(1)請(qǐng)直接寫(xiě)出、兩點(diǎn)的坐標(biāo);
(2)若把向上平移個(gè)單位,再向右平移個(gè)單位得,請(qǐng)?jiān)趫D中畫(huà)出,并寫(xiě)出點(diǎn)的坐標(biāo);
(3)求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,FH是⊙O的切線(xiàn),切點(diǎn)為F,FH∥BC,連接AF交BC于E,∠ABC的平分線(xiàn)BD交AF于D,連接BF.
(1)證明:AF平分∠BAC;
(2)證明:BF=FD;
(3)若EF=4,DE=3,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線(xiàn)與直線(xiàn)y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線(xiàn)的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說(shuō)明理由;
(3)把拋物線(xiàn)與直線(xiàn)y=x的交點(diǎn)稱(chēng)為拋物線(xiàn)的不動(dòng)點(diǎn).若將(1)中拋物線(xiàn)平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿(mǎn)足什么條件時(shí),平移后的拋物線(xiàn)總有不動(dòng)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形ABCD中,AB=2,CD=3,M、N分別是AD,BC的中點(diǎn),則線(xiàn)段MN的取值范圍是( )
A. 1<MN<5 B. 1<MN≤5 C. <MN< D. <MN≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2,正確的個(gè)數(shù)為
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解同學(xué)對(duì)體育活動(dòng)的喜愛(ài)情況,某校設(shè)計(jì)了“你最喜歡的體育活動(dòng)是哪一項(xiàng)(僅限一項(xiàng))”的調(diào)查問(wèn)卷該校對(duì)本校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的統(tǒng)計(jì)圖的部分。
抽樣調(diào)查學(xué)生最喜歡的體育活動(dòng)人數(shù)的直方圖 抽樣調(diào)查學(xué)生最喜歡的體育活動(dòng)人數(shù)扇形統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答以下問(wèn)題:
(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?
(2)①請(qǐng)補(bǔ)全圖1并標(biāo)上數(shù)據(jù),②圖2中=________;
(3)若該校共有學(xué)生800人,請(qǐng)你估計(jì)該校最喜羽毛球項(xiàng)目的學(xué)生約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com