【題目】平面直角坐標系xOy中有四點A(﹣2,0),B(﹣1,0),C(0,1),D(0,2)在A、B、C、D中取兩點與點O為頂點作三角形,所作三角形是等腰直角三角形的概率是

【答案】
【解析】解:如圖,在A、B、C、D中取兩點與點O為頂點作三角形一共可作4個三角形, 其中所作三角形是等腰直角三角形的有2個,
∴P(所作三角形是等腰直角三角形)= = ,
所以答案是:

【考點精析】掌握等腰直角三角形和概率公式是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】北京地鐵1號線是中國最早的地鐵線路,2000年實現(xiàn)了23個車站的貫通運營,該線西起蘋果園站,東至四惠東站,全長約31千米.下表是北京地鐵1號線首末車時刻表,開往四惠東方向和蘋果園方向的首車的平均速度均為每小時60千米,求由蘋果園站和四惠東站開出的首車第一次相遇的時間.

北京地鐵1號線首末車時刻表

車站名稱

往四惠東方向

往蘋果園方向

首車時間

末車時間

首車時間

末車時間

蘋果園

5:10

22:55

--

--

四惠東

--

--

5:05

23:15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作:如圖,直線AB與CD交于點O,按要求完成下列問題.

(1)用量角器量得∠AOC=   度.AB與CD的關系可記作   

(2)畫出∠BOC的角平分線OM,∠BOM=∠   =   度.

(3)在射線OM上取一點P,畫出點P到直線AB的距離PE.

(4)如圖若按“上北下南左西右東”的方位標記,請畫出表示“南偏西30°”的射線OF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.
(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?
(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量,請設計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示為20137月份的日歷示意圖.

(1)請你計算虛線方框圈出的2×2個數(shù)(22列的4個數(shù))的和;

(2)若方框圈出的2×2個數(shù)從左下角到右上角的2個數(shù)之和為46,則這4個數(shù)的最后一天是7   日.(直接填空)

(3)若方框圈出的2×2個數(shù)的和最大,請你用方框?qū)⑦@4個數(shù)圈出來,并計算這4個數(shù)的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD中,AB=6,第一次平移長方形ABCD沿AB的方向向右平移5個單位,得到長方形A1B1C1D1,第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個單位,得到長方形A2B2C2D2,第n次平移將長方形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個單位,得到長方形AnBnCnDn(n>2),若ABn的長度為56,則n=_

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在△ABC中,AB=AC,∠BAC=90°.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問題:
(1)當點D在線段BC上時(與點B不重合),如圖甲,線段CF、BD之間的位置關系為 , 數(shù)量關系為
(2)當點D在線段BC的延長線上時,如圖乙,①中的結(jié)論是否仍然成立,為什么?

查看答案和解析>>

同步練習冊答案