【題目】如圖,△ABC在平面直角坐標(biāo)系中,∠ACB90°,ACBC,A的坐標(biāo)是(0,m)(m0),點(diǎn)C的坐標(biāo)是(2,0),點(diǎn)Bx軸上方.

1)如圖1所示,若點(diǎn)By軸上,則m的值是   ;

2)如圖2所示,BCy軸交于點(diǎn)D

m=﹣6,求點(diǎn)B的坐標(biāo);

y軸恰好平分∠BAC,求OD的長(zhǎng).

【答案】1-2;(2B(﹣42);OD22

【解析】

1)利用等腰直角三角形的性質(zhì)和判定解答即可;

2)①如圖21中,作BHx軸于H.利用余角的性質(zhì)可得∠BCH=∠OAC,然后根據(jù)AAS即可證明△BHC≌△COA,進(jìn)一步利用全等三角形的性質(zhì)即可求出結(jié)果;

②如圖22中,在OA截取一點(diǎn)F,使得OFOC,則OFFC可得,由角平分線的性質(zhì)和三角形的外角性質(zhì)可得△AFC是等腰三角形,于是OA可得,易證△COD∽△AOC,然后利用相似三角形的性質(zhì)即可求出結(jié)果.

解:(1)如圖1中,∵CBCAOCAB,∴∠OCB=∠OCA45°,

OAOC2,∴A0,﹣2),∴m=﹣2

故答案為﹣2;

2)①如圖21中,作BHx軸于H

∵∠AOC=∠BHC=∠ACB90°

∴∠BCH+ACO90°,∠ACO+OAC90°

∴∠BCH=∠OAC,

BCAC,∴△BHC≌△COAAAS),

BHOC2,CHOA6

OHCHOC4,

B(﹣4,2);

②如圖22中,在OA截取一點(diǎn)F,使得OFOC

OFOC2,∠FOC90°,∴FC2,∠OFC=∠OCF45°

AD平分∠CAB,∴∠DACCAB22.5°,

∵∠OFC=∠FAC+FCA,∴∠FCA22.5°

∴∠FAC=∠FCA22.5°,

AFCF2,

OA2+2,∴A0,﹣22),

∵∠DCO=∠OAC,∠COD=∠AOC90°

∴△COD∽△AOC,∴,即,

OD22

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)軸上另一點(diǎn),頂點(diǎn)的坐標(biāo)為.矩形的頂點(diǎn)與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2AB=3

1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

2)將矩形以每秒個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)也以相同的速度從點(diǎn)出發(fā)向勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為,直線與該拋物線的交點(diǎn)為(如圖2所示)

①當(dāng),判斷點(diǎn)是否在直線上,并說(shuō)明理由;

②設(shè)PN、C、D以為頂點(diǎn)的多邊形面積為,試問(wèn)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)從點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)點(diǎn)出發(fā),沿的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

1)當(dāng)為何值時(shí),

2)當(dāng)為何值時(shí),

3能否與相似?若能,求出的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)開(kāi)展征文活動(dòng),征文主題只能從愛(ài)國(guó)”“敬業(yè)”“誠(chéng)信”“友善四個(gè)主題選擇一個(gè),七年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

1)求共抽取了多少名學(xué)生的征文;

2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)在扇形統(tǒng)計(jì)圖中,愛(ài)國(guó)主題所對(duì)應(yīng)的圓心角是多少;

4)如果該校七年級(jí)共有名學(xué)生,請(qǐng)估計(jì)該校選擇以友善為主題的七年級(jí)學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)yk0,x0)的圖象上,ABx軸于點(diǎn)B,OCAB于點(diǎn)D,若CDOD,則AODBCD的面積比為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD的上方作等邊三角形ADE,連接BE,CE

1)求證:△ABE≌△DCE;

2)連接AC,設(shè)ACBE交于點(diǎn)F,求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“傳箴言”活動(dòng)中,某班團(tuán)支部對(duì)該班全體團(tuán)員在一個(gè)月內(nèi)所發(fā)箴言條數(shù)的情況進(jìn)行了統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖:

1)求該班團(tuán)員在這一個(gè)月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué).現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加該校團(tuán)委組織的“箴言”活動(dòng)總結(jié)會(huì),請(qǐng)你用列表法或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)和縱坐標(biāo)相等的點(diǎn)叫“夢(mèng)之點(diǎn)”,例如點(diǎn)(11),(﹣2,﹣2),,…都是“夢(mèng)之點(diǎn)”,顯然“夢(mèng)之點(diǎn)”有無(wú)數(shù)個(gè).

1)若點(diǎn)P2,m)是反比例函數(shù)yn為常數(shù),n0)的圖象上的“夢(mèng)之點(diǎn)”,求這個(gè)反比例函數(shù)的解析式;

2)函數(shù)y3kx+s1k,s為常數(shù))的圖象上存在“夢(mèng)之點(diǎn)”嗎?若存在,請(qǐng)求出“夢(mèng)之點(diǎn)”的坐標(biāo),若不存在,說(shuō)明理由;

3)若二次函數(shù)yax2+bx+1a,b是常數(shù),a0)的圖象上存在兩個(gè)“夢(mèng)之點(diǎn)”Ax1x1),Bx2x2),且滿足﹣2x12,|x1x2|2,令tb2b+,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yx2+2m1x2mm0.5)的最低點(diǎn)的縱坐標(biāo)為﹣4

1)求拋物線的解析式;

2)如圖1,拋物線與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)CD為拋物線上的一點(diǎn),BD平分四邊形ABCD的面積,求點(diǎn)D的坐標(biāo);

3)如圖2,平移拋物線yx2+2m1x2m,使其頂點(diǎn)為坐標(biāo)原點(diǎn),直線y=﹣2上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作兩條直線,分別與拋物線有唯一的公共點(diǎn)E、F(直線PE、PF不與y軸平行),求證:直線EF恒過(guò)某一定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案