【題目】已知:如圖,點(diǎn)D是△ABC中BC邊上的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別是點(diǎn)EF,且BF=CE.
(1)求證:Rt△BDF≌Rt△CDE
(2)問:△ABC滿足什么條件時(shí),四邊形AEDF是正方形,并說明理由.
【答案】(1)見解析;(2)當(dāng)△ABC滿足∠A=90°(答案不唯一)時(shí),四邊形AEDF是正方形,理由見解析
【解析】
(1)先利用HL判定Rt△BDF≌Rt△CDE即可;
(2)由已知可證明四邊形AEDF是矩形,由全等三角形的性質(zhì)得出DE=DF,即可得出結(jié)論.
∵DE⊥AC,DF⊥AB,
∴∠BDF=∠CED=90°
∵點(diǎn)D是△ABC中BC邊上的中點(diǎn),
∴BD=CD,在Rt△BDF和Rt△CDF中, ,
∴Rt△BDF≌Rt△CDE(HL);
(2)解:當(dāng)△ABC滿足∠A=90°(答案不唯一)時(shí),四邊形AEDF是正方形;理由如下:
∵∠BDF=∠CED=90°,∠A=90°,
∴四邊形AEDF是矩形,
∵Rt△BDF≌Rt△CDE,
∴DE=DF,
∴四邊形AEDF是正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系上,已知點(diǎn) A(8,4),AB⊥y軸于 B,AC⊥x軸于 C,直線 y=x交 AB于 D.
(1)如圖 1,若 E 為 OD 延長線上一動(dòng)點(diǎn),當(dāng)△BCE 的面積,S△BCE=20 時(shí),過點(diǎn) E 作 EF⊥AB于 F,點(diǎn) G、H 分別為 AC、CB 上動(dòng)點(diǎn),求 FG+GH 的最小值及點(diǎn) G 的坐標(biāo).
(2)如圖 2,直線 BC 與 DE 交于點(diǎn) M,作直線 MN∥y 軸,在(1)的條件下,將△DEF 沿 DE方向平移 個(gè)單位得到△D′E′F′,在直線 MN 上是否存在點(diǎn) P 使得△BF′P 為等腰三角形,若存在請直接寫出滿足條件的點(diǎn) P 的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過B點(diǎn),且與x軸交于C,D兩點(diǎn)(點(diǎn)C在左側(cè)),且C(-3,0).
(1)求拋物線的解析式;
(2)平移直線AB,使得平移后的直線與拋物線分別交于點(diǎn)D,E,與y軸交于點(diǎn)F,連接CE,CF,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在梯形ABCD中,AB∥CD,CE平分∠BCD,CE⊥AD于E,DE=2AE.若△CED面積為1,則四邊形ABCE的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC和△DEF為等邊三角形,AB=DE,點(diǎn)B,C,D在x軸上,點(diǎn)A,E,F在y軸上,下面判斷正確的是( )
A.△DEF是△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的
B.△DEF是△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的
C.△DEF是△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°得到的
D.△DEF是△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)請按下列要求畫圖:
①將△ABC先向右平移4個(gè)單位長度、再向上平移2個(gè)單位長度,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對稱,畫出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對稱,請直接寫出對稱中心M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銅陵市義安區(qū)實(shí)施了城鄉(xiāng)居民基本醫(yī)療保險(xiǎn)(簡稱“醫(yī)療保險(xiǎn)”),辦法規(guī)定農(nóng)村村民只要每人每年交納180元錢就可以加入醫(yī)療保險(xiǎn),住院時(shí)自己先墊付,出院同時(shí)就可得到按一定比例的報(bào)銷款,這項(xiàng)舉措惠及民生,吳斌與同學(xué)隨機(jī)調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計(jì)圖.
根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查了多少村民?被調(diào)查的村民中參加醫(yī)療保險(xiǎn),得到報(bào)銷款的有多少人?
(2)若該鎮(zhèn)有34000村民,請估算有多少人參加了醫(yī)療保險(xiǎn)?要使兩年后參加醫(yī)療保險(xiǎn)的人數(shù)增加到業(yè)務(wù)31460人,假設(shè)這兩年的年增長率相同,求年增長率?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com