【題目】如圖,拋物線交軸于點和,交軸于點拋物線的頂點為,下列四個結(jié)論:
①點的坐標為;
②當時,是等腰直角三角形;
③若,則
④拋物線上有兩點和,若,且,則
其中結(jié)論正確的序號是__________.
科目:初中數(shù)學 來源: 題型:
【題目】為助力我省脫貧攻堅,某村在“農(nóng)村淘寶網(wǎng)店”上銷售該村優(yōu)質(zhì)農(nóng)產(chǎn)品,該網(wǎng)店于今年六月底收購一批農(nóng)產(chǎn)品,七月份銷售袋,八、九月該商品十分暢銷,銷售量持續(xù)走高,在售價不變的基礎上,九月份的銷售量達到袋.
(1)求八、九這兩個月銷售量的月平均增長率;
(2)該網(wǎng)店十月降價促銷,經(jīng)調(diào)查發(fā)現(xiàn),若該農(nóng)產(chǎn)品每袋降價元,銷售量可增加袋,當農(nóng)產(chǎn)品每袋降價多少元時,這種農(nóng)產(chǎn)品在十月份可獲利元?(若農(nóng)產(chǎn)品每袋進價元,原售價為每袋元)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在一張ABCD的紙片中,ABCD的面積為6,DC=3,∠BCD=45°,點P是BD上的一動點(點P與點B,D不重合).現(xiàn)將這張紙片分別沿BD,AP剪成三塊,并按圖2(注:圖2中的①,②是將圖1中的①,②翻轉(zhuǎn)背面朝上,再拼接而成的)所示放置
(1)當點P是BD的中點時,求AP的長.
(2)試探究:當點P在BD的什么位置上時,MN的長最?請求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC的中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB∶OE=3∶2.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上,如圖2,△ABC以點A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).
(1)證明:BE=CD
(2)當AC=ED時,探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的旋轉(zhuǎn)角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,求出角α的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作 d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.
(1)當⊙O的半徑為2時,
①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直線與⊙O互為“可及圖形”,求b的取值范圍;
(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩盒中分別標注數(shù)字2、、、和、1、6的3張卡片,這些卡片除數(shù)字外都相同,把卡片洗勻后,從甲、乙兩盒中各任意抽取1張,并把從甲盒中抽得卡片上的數(shù)字作為一個點的橫坐標,從乙盒中抽得卡片上的數(shù)字作為這個點的縱坐標.
(1)請利用列表或畫樹狀圖的方法列出這樣的點所有可能的坐標;
(2)計算這些點落在以原點為圓心、3為半徑的圓內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件。
(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務?
(2)若加工童裝一件可獲利80元, 加工成人裝一件可獲利120元, 那么該車間加工完這批服裝后,共可獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com