【題目】如圖,ABC中,ACB=90°,BAC=20°,點O是AB的中點,將OB繞點O順時針旋轉α角時(0°α<180°),得到OP,當ACP為等腰三角形時,α的值為_____.

【答案】40°或70°或100°.

【解析】

試題分析:根據(jù)旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.連結AP,如圖,由旋轉的性質得OP=OB,則可判斷點P、C在以AB為直徑的圓上,利用圓周角定理得∠BAP=∠BOP=α,∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,然后分類討論:當AP=AC時,∠APC=∠ACP,即90°﹣α=70°;當PA=PC時,∠PAC=∠ACP,即α+20°=90°﹣α,;當CP=CA時,∠CAP=∠CAP,即α+20°=70°,再分別解關于α的方程即可.連結AP,如圖,

點O是AB的中點,OA=OB,OB繞點O順時針旋轉α角時(0°<α<180°),得到OP,OP=OB,點P在以AB為直徑的圓上,∴∠BAP=BOP=α,APC=ABC=70°,∵∠ACB=90°,點P、C在以AB為直徑的圓上,∴∠ACP=ABP=90°﹣α,APC=ABC=70°,當AP=AC時,APC=ACP,即90°﹣α=70°,解得α=40°;當PA=PC時,PAC=ACP,即α+20°=90°﹣α,解得α=70°;當CP=CA時,CAP=CAP,即α+20°=70°,解得α=100°,綜上所述,α的值為40°或70°或100°.故答案為40°或70°或100°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖形似w的函數(shù)是由拋物線y1的一部分,其表達式為:y1=(x22x3)(x3)以及拋物線y2的一部分所構成的,其中曲線y2與曲線y1關于直線x=3對稱,A、B是曲線y1與x軸兩交點(A在B的左邊),C是曲線y1與y軸交點.

(1)求A,B,C三點的坐標和曲線y2的表達式;

(2)我們把其中一條對角線被另一條對角線垂直且平分的四邊形稱為箏形.過點C作x軸的平行線與曲線y1交于另一個點D,連接AD.試問:在曲線y2上是否存在一點M,使得四邊形ACDM為箏形?若存在,計算出點M的橫坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A在數(shù)軸上表示+2,從A點沿數(shù)軸向左平移3個單位到點B,則點B所表示的數(shù)是( )

A. ﹣1 B. 3 C. 5 D. 1 或3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線y=(x+2)2﹣5向左平移2個單位,再向上平移5個單位,平移后所得拋物線的解析式為( 。

A. y=(x+4)2 B. yx2

C. yx2﹣10 D. y=(x+4)2﹣10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=(x+2)2+(m2+1)(m為常數(shù))的頂點在( 。

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華的父母決定今年中考后帶他去旅游,初步商量有意向的五個景點分別為:婺源,三清山,井岡山,廬山,龍虎山,由于受時間限制,只能選其中的二個景點,卻不知該去哪里,于是小華父母決定通過抽簽決定,用五張小紙條分別寫上五個景點做成五個簽,讓小華隨機抽二次,每次抽一個簽,每個簽抽到的機會相等.

(1)小華最希望去婺源,求小華第一次恰好抽到婺源的概率是多少?

(2)除婺源外,小華還希望去三清山,求小華抽到婺源、三清山二個景點中至少一個的概率是多少?(通過畫樹狀圖列表進行分析).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將(a+1)﹣(﹣b+c)去括號,應該等于( 。

A. a+1﹣b﹣c B. a+1﹣b+c C. a+1+b+c D. a+1+b﹣c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作:如圖,邊長為2的正方形ABCD,點P在射線BC上,將ABP沿AP向右翻折,得到AEP,DE所在直線與AP所在直線交于點F.

探究:(1)如圖1,當點P在線段BC上時,BAP=30°,求AFE的度數(shù);若點E恰為線段DF的中點時,請通過運算說明點P會在線段BC的什么位置?并求出此時AFD的度數(shù).

歸納:(2)若點P是線段BC上任意一點時(不與B,C重合),AFD的度數(shù)是否會發(fā)生變化?試證明你的結論;

猜想:(3)如圖2,若點P在BC邊的延長線上時,AFD的度數(shù)是否會發(fā)生變化?試在圖中畫出圖形,并直接寫出結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】64的平方根是·················································································( )

A. 8 B. ±8 C. 4 D. ±4

查看答案和解析>>

同步練習冊答案