【題目】已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、C的坐標分別為、,點D是OA的中點,點P在BC邊上運動,當是等腰三角形時,點Р的坐標為_______________.
【答案】,,,;
【解析】
題中沒指明△ODP的腰長與底分別是哪個邊,故應該分情況進行分析,從而求得點P的坐標.
(1)OD是等腰三角形的底邊時,此時P(2.5,4);
(2)OD是等腰三角形的一條腰時:
①若點O是頂角頂點時,P點就是以點O為圓心,以5為半徑的弧與CB的交點,在直角OPC中,CP===3,則P的坐標是(3,4);②若D是頂角頂點時,P點就是以點D為圓心,以5為半徑的弧與CB的交點,過D作DM⊥BC于點M,在直角PDM中,PM==3,當P在M的左邊時,CP=5-3=2,則P的坐標是(2,4);當P在M的右側(cè)時,CP=5+3=8,則P的坐標是(8,4);故P的坐標為: (2.5,4);(3,4); (2,4)或(8,4).
故答案為: (2.5,4);(3,4);(2,4)或(8,4)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,函數(shù)y=x的圖象為直線l,作點A1(1,0)關(guān)于直線l的對稱點A2,將A2向右平移2個單位得到點A3;再作A3關(guān)于直線l的對稱點A4,將A4向右平移2個單位得到點A5;….則按此規(guī)律,所作出的點A2015的坐標為( )
A. (1007,1008) B. (1008,1007) C. (1006,1007) D. (1007,1006)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小莉在跑道上進行100 m短跑比賽,兩人從出發(fā)點同時起跑,小明到達終點時,小莉離終點還差6 m,已知小明和小莉的平均速度分別為x m/s、y m/s.
(1)如果兩人重新開始比賽,小明從起點向后退6 m,兩人同時起跑能否同時到達終點?若能,請求出兩人到達終點的時間;若不能,請說明誰先到達終點.
(2)如果兩人想同時到達終點,應如何安排兩人起跑位置?請設計兩種方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綠水青山就是金山銀山,國家倡導全民植樹。在今年3月12日植樹節(jié)當天,某校七年級一班48名學生全部參加了植樹活動,男生每人栽種4株,女生每人栽種3株,全班共栽種170株。
(1)該班男、女生各為多少人?
(2)學校選擇購買甲、乙兩種樹苗,甲樹苗 ,乙樹苗 .如果要使購買樹苗的錢不超過1200元,那么最多可以購買甲樹苗多少株?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解本校九年級學生期末數(shù)學考試情況,在九年級隨機抽取了一部分學生 的期末數(shù)學成績?yōu)闃颖,分?/span> A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下 問題.
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統(tǒng)計圖;
(3)這個學校九年級共有學生 1200 人,若分數(shù)為 80 分(含 80 分)以上為優(yōu)秀,請估 計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,,以O為圓心,OC 為半徑的圓分別交AO,BC于點D,E,連接ED并延長交AC于點F.
(1)求證:AB是⊙O的切線;
(2)求的值。
(3)若⊙O的半徑為4,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司到果品基地購買某種優(yōu)質(zhì)水果慰問醫(yī)務工作者,果品基地對購買量在3000kg以上(含3000kg)的顧客采用兩種銷售方案.甲方案:每千克9元,由基地送貨上門;乙方案:每千克8元,由顧客自己租車運回.已知該公司租車從基地到公司的運輸費用為5000元.
(1)分別寫出該公司兩種購買方案付款金額y(元)與所購買的水果量x(kg)之間的函數(shù)關(guān)系式.
(2)當購買量在哪一范圍時,選擇哪種購買方案付款最少?并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com