【題目】如圖,,,,則的值為( 。

A.B.C.D.

【答案】B

【解析】

根據(jù)∠ACB=90°,AC=BCBECEADCED,求得∠ACD=CBE,利用角角邊定理可證得△ACD≌△CBE,得出CE=ADBE=CD=CE-DE,將已知數(shù)值代入求得BE的長,從而即可得出答案.

解:∵BECEADCED,
∴∠ADC=CEB =90°

∴∠CBE+BCE =90°

∵∠ACB=90°,

∴∠ACD+BCE =90°,
∴∠ACD=CBE
在△ACD與△CBE中,

∴△ACD≌△CBEAAS).
CE=AD=5cmBE=DC
DC=CE-DE=5-3=2cm
BE=2cm

BE: CE=2:5

BE: CE的值為

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x32x軸交于AB兩點(點AB的左側(cè)),與y軸交于C點,頂點D

1)求點A、BD三點的坐標;

2)連結(jié)CDx軸于G,過原點OOECD,垂足為H,交拋物線對稱軸于E,求出E點的縱坐標;

3)以②中點E為圓心,1為半徑畫圓,在對稱軸右側(cè)的拋物線上有一動點P,過P作⊙E的切線,切點為Q,當PQ的長最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,正方形ABCD中,以CD為邊作等邊三角形CDE,求∠AED的度數(shù).(畫出相應(yīng)的圖形并解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B、C、D在同一直線上,△ABC△ECD都是等邊三角形,BEAD相交于點M,

(1)求證:∠CBE=∠CAD;

(2)由(1)可知,圖中的△EBC是由△DAC怎樣變換(填一種變換)得到的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是等邊三角形,點是直線上一點,以為一邊在的右側(cè)作等邊

1)如圖①,點在線段上移動時,直接寫出的大小關(guān)系;

2)如圖②,點在線段的延長線上移動時,猜想的大小是否發(fā)生變化.若不變請求出其大;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大圓的弦AB、AC分別切小圓于點MN

1)求證:AB=AC;

2AB8,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°DAB延長線上一點,點EBC邊上,且BE=BD,連結(jié)AE、DEDC

①求證:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形OABC,點O為坐標原點,點Ay軸正半軸上,點Cx軸正半軸上,OA4,OC6,點EOC的中點,將△OAE沿AE翻折,使點O落在點O處,作直線CO',則直線CO'的解析式為(  )

A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,DBC邊的中點,EAB延長線上的一點,且BE=BD

1)求∠BAD∠BDE的度數(shù);

2)求證:AD=DE

查看答案和解析>>

同步練習冊答案