【題目】如圖,在平面直角坐標系中,已知矩形OABC,點O為坐標原點,點Ay軸正半軸上,點Cx軸正半軸上,OA4,OC6,點EOC的中點,將△OAE沿AE翻折,使點O落在點O處,作直線CO',則直線CO'的解析式為( 。

A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8

【答案】D

【解析】

連接OO'AE與點M,過點O'O'HOC于點H,由軸對稱的性質(zhì)可知AE垂直平分OO',先用面積法求出OM的長,進一步得出OO'的長,再證△AOE∽△OHO',分別求出OH,O'H的長,得出點O'的坐標,再結(jié)合點C坐標即可用待定系數(shù)法求出直線CO'的解析式.

解:連接OO'AE與點M,過點O'O'HOC于點H

∴點EOC中點,

OEECOC3

RtAOE中,OE3,AO4,

AE5

∵將△OAE沿AE翻折,使點O落在點O′處,

AE垂直平分OO',

OMO'M

RtAOE中,

SAOEAOOEAEOM,

×3×4×5×OM,

OM

OO',

∵∠O'OH+AOM90°,∠MAO+AOM90°,

∴∠MAO=∠O'OH,

又∵∠AOE=∠OHO'90°,

∴△AOE∽△OHO',

,

OH,O'H,

O'的坐標為(,),

將點O',),C6,0)代入ykx+b,

得,,

解得,k=﹣,b8,

∴直線CO'的解析式為y=﹣x+8,

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)有兩點EF滿足AE=FC= 4,EF =6AEEF,CFEF,則正方形ABCD的面積為 ( )

A.24B.25C.48D.50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,,則的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DEBC,垂足為E.

(1)求證:CD平分∠ACE;

(2)若AC=9,CE=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,解決問題:

學習了勾股定理后我們知道:直角三角形兩條直角邊的平方和等于斜邊的平方.根據(jù)勾股定理我們定義:如圖①,點M、N是線段AB上兩點,如果線段AM、MNNB能構(gòu)成直角三角形,則稱點M、N是線段AB的勾股點

解決問題

1)在圖①中,如果AM2MN3,則NB   

2)如圖②,已知點C是線段AB上一定點(ACBC),在線段AB上求作一點D,使得CD是線段AB的勾股點.李玉同學是這樣做的:過點C作直線GHAB,在GH上截取CEAC,連接BE,作BE的垂直平分線交AB于點D,則C、D是線段AB的勾股點你認為李玉同學的做法對嗎?請說明理由

3)如圖③,DE是△ABC的中位線,MNAB邊的勾股點(AMMNNB),連接CMCN分別交DE于點G、H求證:GH是線段DE的勾股點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不透明布袋內(nèi)裝有形狀、大小、質(zhì)地完全相同的4個小球,分別標有數(shù)字1,2,3,4.

(1)從布袋中隨機地取出一個小球,求小球上所標的數(shù)字不為2的概率;

(2)從布袋中隨機地取出一個小球,記錄小球上所標的數(shù)字為x,不將取出的小球放回布袋,再隨機地取出一個小球,記錄小球上所標的數(shù)字為y,這樣就確定點E的一個坐標為(x,y),求點E落在直線y=x+1上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某專賣店經(jīng)市場調(diào)查得知,一種商品的月銷售量 Q(單位:噸)與銷售價格 x(單位:萬元/)的關(guān)系可用下圖中的折線表示.

(1)寫出月銷售量 Q 關(guān)于銷售價格 x 的關(guān)系;

(2)如果該商品的進價為 5 萬元/噸,除去進貨成本外,專賣店銷售該商品每月的固定成本為 10 萬元,問該商品 每噸定價多少萬元時,銷售該商品的月利潤最大?并求月利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:OAB是等腰三角形.

查看答案和解析>>

同步練習冊答案