【題目】如圖,、是兩座現(xiàn)代化城市,是一個古城遺址,城在城的北偏東,在城的北偏西城在城的正東方向,且城與城相距120千米,現(xiàn)在、兩城市修建一條筆直的高速公路.

1)請你計算公路的長度(結(jié)果保留根號);

2)若以為圓心,以60千米為半徑的圓形區(qū)域內(nèi)為古跡和地下文物保護區(qū),請你分析公路會不會穿越這個保護區(qū),并說明理由.

【答案】160+km;(2)不可能,理由見解析

【解析】

1)作CDABD點.在RtACD中,求出CD、AD;在Rt△BCD中,求出BD,問題得解;

2)比較CD60km,即可得出結(jié)論.

解:作CDABD點.

1)在RtACD中,

CDACsin60°120×千米,ADACcos60°120×60千米,

RtBCD中,BDCDtan45°×1千米,

所以ABAD+DB60+km);

2)不可能.因為CD60,所以不可能對文物古跡造成損毀.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1 ,

其中正確的是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC

1)求證:四邊形ABFC是菱形;

2)若AD=BE=1,求半圓的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知雙曲線在第一象限內(nèi)交于兩點,,則扇形的面積是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于點、,頂點為M

1)求拋物線的解析式和點M的坐標;

2)點E是拋物線段BC上的一個動點,設(shè)的面積為S,求出S的最大值,并求出此時點E的坐標;

3)在拋物線的對稱軸上是否存在點P,使得以A、PC為頂點的三角形是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售A,B兩款保溫杯,已知B款保溫杯的銷售單價比A款保溫杯多10元,用480元購買B款保溫杯的數(shù)量與用360元購買A款保溫杯的數(shù)量相同.

1A,B兩款保溫杯的銷售單價各是多少元?

2)由于需求量大,A,B兩款保溫杯很快售完,該超市計劃再次購進這兩款保溫杯共120個,且A款保溫杯的數(shù)量不少于B保溫杯的2倍,A保溫杯的售價不變,B款保溫杯的銷售單價降低10%,兩款保溫杯的進價每個均為20元,應如何進貨才能使這批保溫杯的銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著社會經(jīng)濟的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學興趣小組隨機抽取了我市某單位部分職工進行調(diào)查,對職工購車情況分4類(A:車價40萬元以上;B:車價在20—40萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結(jié)果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:

1)調(diào)查樣本人數(shù)為__________,樣本中B類人數(shù)百分比是_______,其所在扇形統(tǒng)計圖中的圓心角度數(shù)是________

2)把條形統(tǒng)計圖補充完整;

3)該單位甲、乙兩個科室中未購車人數(shù)分別為2人和3人,現(xiàn)從中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線x軸于點和點A,交y軸負半軸于點,且.有下列結(jié)論:(

;②;③;④.其中,正確結(jié)論的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,可以由繞點順時針旋轉(zhuǎn)90°得到(點與點是對應點,點與點是對應點),連接,則的度數(shù)是________.

查看答案和解析>>

同步練習冊答案