【題目】如圖,菱形ABCD中,E是對角線AC上一點.
(1)求證:△ABE≌△ADE;
(2)若AB=AE,∠BAE=36°,求∠CDE的度數(shù).
【答案】
(1)證明:∵四邊形ABCD是菱形,
∴AB=AD,∠CAB=∠CAD,
在△ABE和△ADE中,
,
∴△ABE≌△ADE(SAS)
(2)解:∵AB=AE,∠BAE=36°,
∴∠AEB=∠ABE= ,
∵△ABE≌△ADE,
∴∠AED=∠AEB=72°,
∵四邊形ABCD是菱形,
∴AB∥CD,
∴∠DCA=∠BAE=36°,
∴∠CDE=∠AED﹣∠DCA=72°﹣36°=36°.
【解析】(1)由菱形的性質(zhì)可得到AD=AB,∠CAB=∠CAD,結(jié)合公共邊可證得結(jié)論;(2)由等腰三角形的性質(zhì)可求得∠AEB=∠ABE,再結(jié)合(1)的結(jié)論,可求得∠AED,結(jié)合菱形的性質(zhì)可求出∠CDE的大小.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩種正方形瓷磚鋪設(shè)正方形地面,觀察圖形并猜想填空:當(dāng)黑色瓷磚為28塊時,白色瓷磚塊數(shù)為( )
A. 27 B. 28 C. 33 D. 35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)-14-×[2-(-3)]; (2)(-3)-1×-6÷|-|;
(3)2×[5+]-(-|-4|÷);(4)--[-3+(-3)÷(-)].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x﹣3與x軸交于點A,與y軸交于點C.拋物線y=x2+bx+c經(jīng)過A,C兩點,且與x軸交于另一點B(點B在點A右側(cè)).
(1)求拋物線的解析式及點B坐標(biāo);
(2)若點M是線段BC上一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時,在x軸下方拋物線上是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,某市風(fēng)景區(qū)在天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù)):
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化(單位:萬人) |
已知月日的游客人數(shù)為萬人,請回答下列問題:
七天內(nèi)游客人數(shù)最多的是哪天,最少的是哪天?它們相差多少萬人?
求這天的游客總?cè)藬?shù)是多少萬人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“紅樹林小組”全體組員參加了義務(wù)植樹活動,領(lǐng)得準(zhǔn)備種植的樹苗一批,組長決定采用分工負(fù)責(zé)制,經(jīng)計算發(fā)現(xiàn):若每位組員種植10棵樹苗,則還剩88棵;若每位組員種植12棵樹苗,則有一位組員種植的樹苗不到4棵,求準(zhǔn)備種植樹苗的棵數(shù)和“紅樹林小組”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E是BC上一點,直線AE交BD于點M,交DC的延長線于點F,G是EF的中點,連結(jié)CG.求證: ①△ABM≌△CBM;
②CG⊥CM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】耐心算一算:(1)-3-7; (2);
(3)-20+(-18)-12 +10 (4)-2.5×17×(-4)×(-0.1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com