【題目】將二次函數(shù)y=ax2的圖象先向下平移2個(gè)單位,再向右平移3個(gè)單位,截x軸所得的線段長(zhǎng)為4,則a=( )
A.1B.C.D.
【答案】D
【解析】
根據(jù)題意可以寫(xiě)出平移后的函數(shù)解析式,然后根據(jù)截x軸所得的線段長(zhǎng)為4,可以求得a的值,本題得以解決.
解:二次函數(shù)y=ax2的圖象先向下平移2個(gè)單位,再向右平移3個(gè)單位之后的函數(shù)解析式為y=a(x﹣3)2﹣2,
當(dāng)y=0時(shí),ax2﹣6ax+9a﹣2=0,
設(shè)方程ax2﹣6ax+9a﹣2=0的兩個(gè)根為x1,x2,
則x1+x2=6,x1x2=,
∵平移后的函數(shù)截x軸所得的線段長(zhǎng)為4,
∴|x1﹣x2|=4,
∴(x1﹣x2)2=16,
∴(x1+x2)2﹣4x1x2=16,
∴36﹣4×=16,
解得,a=,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò),兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.
①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動(dòng)時(shí),求的面積的最大值;
②該拋物線上是否存在點(diǎn)P,使得若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,以為邊在的另一側(cè)作,點(diǎn)為射線上任意一點(diǎn),在射線上截取,連接.
(1)如圖1,當(dāng)點(diǎn)落在線段的延長(zhǎng)線上時(shí),直接寫(xiě)出的度數(shù);
(2)如圖2,當(dāng)點(diǎn)落在線段(不含邊界)上時(shí),與于點(diǎn),請(qǐng)問(wèn)(1)中的結(jié)論是否仍成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過(guò)點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q,設(shè)A、P兩點(diǎn)間的距離為x.
探究:
(1)當(dāng)點(diǎn)Q在邊CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;
(2)當(dāng)點(diǎn)Q在邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;(3)當(dāng)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)x的值;如果不可能,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,延長(zhǎng)至點(diǎn),且,為中點(diǎn),連結(jié),.
(1)求證:的面積是的面積的倍.
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)拋擲兩枚質(zhì)地均勻的正四面體骰子,骰子各個(gè)面的點(diǎn)數(shù)分別是1至4的整數(shù),把這兩枚骰子向下的面的點(diǎn)數(shù)記為(a,b),其中第一枚骰子的點(diǎn)數(shù)記為a,第二枚骰子的點(diǎn)數(shù)記為b.
(1)用列舉法或樹(shù)狀圖法求(a,b)的結(jié)果有多少種?
(2)求方程x2+bx+a=0有實(shí)數(shù)解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市用3400元購(gòu)進(jìn)A、B兩種文具盒共120個(gè),這兩種文具盒的進(jìn)價(jià)、標(biāo)價(jià)如下表:
價(jià)格/類(lèi)型 | A型 | B型 |
進(jìn)價(jià)(元/只) | 15 | 35 |
標(biāo)價(jià)(元/只) | 25 | 50 |
(1)這兩種文具盒各購(gòu)進(jìn)多少只?
(2)若A型文具盒按標(biāo)價(jià)的9折出售,B型文具盒按標(biāo)價(jià)的8折出售,那么這批文具盒全部售出后,超市共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
【答案】D
【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開(kāi)口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;
B.由函數(shù)y=mx+m的圖象可知m<0,對(duì)稱(chēng)軸為x=<0,則對(duì)稱(chēng)軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開(kāi)口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開(kāi)口方向朝上,對(duì)稱(chēng)軸為x=<0,則對(duì)稱(chēng)軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;
故選:D.
【題型】單選題
【結(jié)束】
10
【題目】如圖,已知菱形ABCD的周長(zhǎng)為16,面積為,E為AB的中點(diǎn),若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+AP的最小值為( 。
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,連接BD、CE.將△ADE繞點(diǎn)A旋轉(zhuǎn),BD、CE也隨之運(yùn)動(dòng).
(1)求證:BD=CE;
(2)在△ADE繞點(diǎn)A旋轉(zhuǎn)過(guò)程中,當(dāng)AE∥BC時(shí),求∠DAC的度數(shù);
(3)如圖②,當(dāng)點(diǎn)D恰好是△ABC的外心時(shí),連接DC,判斷四邊形ADCE的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com