分析 如圖作EH⊥AN于H,由△ABC≌△HCE得AB=CH,AC=EH,再證明△DCM≌△EHM得CM=HM即可解決問(wèn)題.
解答 解:如圖作EH⊥AN于H,
∵BA⊥AN,EH⊥AN,
∴∠BAC=∠EHC=90°,
∵∠ABC+∠ACB=90°,∠ACB+∠ECH=90°,
∴∠ABC=∠ECH,
∵△BCE和△ACD都是等腰三角形,
∴BC=CE,AC=DC,∠BCE=∠ACD=90°
在△ABC和△HCE中,
$\left\{\begin{array}{l}{∠BAC=∠EHC}\\{∠ABC=∠HCE}\\{BC=CE}\end{array}\right.$
∴△ABC≌△HCE,
∴AC=EH=CD,AB=CH,
在△DCM和△EHM中,
$\left\{\begin{array}{l}{CD=EH}\\{∠DCM=∠EHM}\\{∠CMD=∠EMH}\end{array}\right.$,
∴△DCM≌△EHM.
∴CM=HM,
∴CM=$\frac{1}{2}$CH=$\frac{1}{2}$AB=4.
故答案為4.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì),解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形,掌握添加輔助線的方法,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1.2 | B. | 1.3 | C. | 1.4 | D. | 2.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等于4cm | B. | 大于4cm而小于5cm | ||
C. | 不大于4cm | D. | 小于4cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com