【題目】在一個長8 厘米,寬6厘米的長方形中,剪下一個最大的圓,這個圓的面積是( )平方厘米.
A.18.84B.28.26C.25.12D.50.24
科目:初中數(shù)學 來源: 題型:
【題目】推理填空:
如圖所示,已知∠1 = ∠2,∠B = ∠C,可推得AB∥CD,
理由如下:
∵∠1 = ∠2(已知),且∠1 = ∠4(_____________________),
∴∠2 = ∠4(等量代換).
∴CE∥BF(__________________________).
∴∠_____= ∠3(________________________)
又∵∠B = ∠C(已知),
∴∠3= ∠B(等量代換),
∴AB∥CD(_____________________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩點同時從原點O出發(fā),點A以每秒x個單位長度沿x軸的負方向運動,點B以每秒y個單位長度沿y軸的正方向運動.
(1)若|x+2y﹣5|+|2x﹣y|=0,試分別求出1秒鐘后A、B兩點的坐標;
(2)設∠BAO的外角和∠ABO的外角的平分線相交于點P,問:點A、B在運動的過程中,∠P的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文化用品商店用2000元購進一批學生書包,面市后發(fā)現(xiàn)供不應求,商店又購進第二批同樣的書包,所購數(shù)量是第一批購進數(shù)量的3倍,但單價貴了4元,結果第二批用了6300元。
(1)求第一批購進書包的單價是多少元?
(2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對面積為s的△ABC逐次進行以下操作:
第一次操作,分別延長AB、BC、CA至點A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1;
第二次操作,分別延長A1B1、B1C1、C1A1至點A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1順次連接A2、B2、C2,得到△A2B2C2,記其面積為S2;
…;
按此規(guī)律繼續(xù)下去,可得到△AnBnCn,則其面積Sn=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形MNPQ中,動點R從點N出發(fā),沿著N→P→Q→M方向運動至點M處停止,設點R運動的路程為x,△MNR的面積為y,如果y關于x的函數(shù)圖象如圖2所示,則下列說法不正確的是( )
A.當x=2時,y=5
B.矩形MNPQ的面積是20
C.當x=6時,y=10
D.當y=時,x=10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣2x+8與兩坐標軸分別交于P、Q兩點,在線段PQ上有一點A,過A點分別作兩坐標軸的垂線,垂足分別為B、C.
(1)若矩形ABOC的面積為5,求A點坐標.
(2)若點A在線段PQ上移動,求矩形ABOC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按圖填空,并注明理由.
⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D
證明:過E點作EF∥AB(經(jīng)過直線外一點有且只有一條直線與這條直線平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代換).
⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解:因為EF∥AD(已知)
所以∠2=∠3.( )
又因為∠1=∠2,所以∠1=∠3.(等量代換)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因為∠BAC=70°,所以∠AGD=110°.
圖⑴ 圖⑵
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D兩點在⊙O上,若∠C=45°,
(1)求∠ABD的度數(shù).
(2)若∠CDB=30°,BC=3,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com