【題目】如圖1,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿著N→P→Q→M方向運(yùn)動(dòng)至點(diǎn)M處停止,設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則下列說法不正確的是(

A.當(dāng)x=2時(shí),y=5

B.矩形MNPQ的面積是20

C.當(dāng)x=6時(shí),y=10

D.當(dāng)y=時(shí),x=10

【答案】D

析】

試題分析:由圖2可知:PN=4,PQ=5.

A、當(dāng)x=2時(shí),y=×MN×RN=×5×2=5,故A正確,與要求不符;

B、矩形的面積=MNPN=4×5=20,故B正確,與要求不符;

C、當(dāng)x=6時(shí),點(diǎn)R在QP上,y=×MN×RN=10,故C正確,與要求不符;

D、當(dāng)y=時(shí),x=3或x=10,故錯(cuò)誤,與要求相符.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)﹣2≤x≤1時(shí),二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實(shí)數(shù)m的值為(
A.﹣
B. 或﹣
C.2或﹣
D.2或﹣ 或﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育劉老師對(duì)全班45名學(xué)生進(jìn)行了一次體育模擬測(cè)試(得分均為整數(shù)),成績(jī)滿分為10分,1班的體育委員根據(jù)這次測(cè)試成績(jī),制作了統(tǒng)計(jì)圖和分析表如下:

初二1班體育模擬測(cè)試成績(jī)分析表

平均分

方差

中位數(shù)

眾數(shù)

男生

2

8

7

女生

7.92

1.99

8

根據(jù)以上信息,解答下列問題:

(1)這個(gè)班共有男生________人,共有女生________人;

(2)補(bǔ)全初二1班體育模擬測(cè)試成績(jī)分析表.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC=ACB,AD、BD、CD分別平分ABC的外角EAC、內(nèi)角ABC、外角ACF.以下結(jié)論:

①ADBC;

ACB=2ADB;

ADC=90°﹣ABD;

④BD平分ADC;

BDC=BAC.

其中正確的結(jié)論有( )

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)長(zhǎng)8 厘米,寬6厘米的長(zhǎng)方形中,剪下一個(gè)最大的圓,這個(gè)圓的面積是( )平方厘米.

A.18.84B.28.26C.25.12D.50.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)已知:如圖,直線MN⊥直線PQ,垂足為O,點(diǎn)A在射線OP上,點(diǎn)B在射線OQ上(A、B不與O點(diǎn)重合),點(diǎn)C在射線ON上且OC=2,過點(diǎn)C作直線∥PQ,點(diǎn)D在點(diǎn)C的左邊且CD=3

1)直接寫出△BCD的面積.

2)如圖,若AC⊥BC,作∠CBA的平分線交OCE,交ACF,則∠CEF∠CFE有何數(shù)量關(guān)系?請(qǐng)說明理由.

3)如圖,若∠ADC=∠DAC,點(diǎn)B在射線OQ上運(yùn)動(dòng),∠ACB的平分線交DA的延長(zhǎng)線于點(diǎn)H,在點(diǎn)B運(yùn)動(dòng)過程中的值是否變化?若不變,直接寫出其值;若變化,直接寫出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列多項(xiàng)式的乘法中,能用平方差公式計(jì)算的是( )

A. (-m +n)(m - n) B. a +b)(b -a)

C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,弦PQ∥AB交弦CD于點(diǎn)M,BE=18,CD=PQ=24,則OM的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點(diǎn)試開放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過30人時(shí),人均收費(fèi)120元;超過30人且不超過m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過一定數(shù)量時(shí),會(huì)出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案