分析 (1)欲證明△ACD∽△ABC,只要證明①∠ADC=∠ACB,②∠CAD=∠BAC即可.
(2)利用等角的余角相等證明,即證明∠PCA+∠OCA=90°以及∠ABC+∠OAC=90°由此可以解決問(wèn)題.
(3)先證明FA=FC=5,在RT△ADF中,根據(jù)sin∠FAD=$\frac{3}{5}$求出DF、AD,在RT△COD中利用勾股定理求出半徑,最后在RT△ABE中利用sin∠BAE=$\frac{3}{5}$求出BE即可.
解答 (1)證明:∵AB是直徑,
∴∠ACB=90°,
∵CG⊥AB,
∴∠ADC=90°=∠ACB,
∵∠CAD=∠BAC,
∴△ACD∽△ABC.
(2)證明:連接OC.
∵PC切⊙O于C,
∴OC⊥PC,
∴∠PCO=90°
∴∠PCA+∠OCA=90°,
∵∠ACB=90°,
∴∠ABC+∠OAC=90°,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠PCA=∠ABC.
(3)解:∵AE∥PC,
∴∠PCA=∠CAF,
∵AB⊥CG,
∴$\widehat{AC}$=$\widehat{AG}$,
∴∠ACF=∠ABC,
∵∠PCA=∠ABC,
∴∠ACF=∠CAF,
∴FA=FC,
∵CF=5,
∴AF=5,
∵AE∥PC,
∴∠FAD=∠P,
∵sin∠P=$\frac{3}{5}$,
∴sin∠FAD=$\frac{3}{5}$,
∴FD=3,AD=4,CD=8,
在RT△COD中,設(shè)CO=r,則有r2=(r-4)2+82
∴r=10,
∴AB=2r=20,
∵AB是直徑,
∴∠AEB=90°,
∴sin∠EAB=$\frac{3}{5}$,
∴$\frac{EB}{AB}=\frac{3}{5}$,
∴$\frac{EB}{20}$=$\frac{3}{5}$,
∴EB=12.
點(diǎn)評(píng) 本題考查圓的有關(guān)知識(shí)、相似三角形的判定和性質(zhì)、三角函數(shù)、勾股定理等知識(shí),注意連接OC是圓中常用輔助線(xiàn),熟練掌握垂徑定理、切線(xiàn)的性質(zhì)是解題的關(guān)鍵,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m2+n2=(m+n)(m-n) | B. | x2+2x-1=(x-1)2 | C. | a2-a=a(a-1) | D. | a2+2a+1=a(a+2)+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{25}$=5 | B. | ±$\sqrt{64}$=±8 | C. | $\sqrt{(-6)^{2}}$=-6 | D. | $\root{3}{-8}$=-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com