【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點B的對應(yīng)點為點D,點C的對應(yīng)點為點E,連接BD,BE.
(1)如圖,當(dāng)α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
【答案】(1)①②詳見解析;③3﹣4;(2)13.
【解析】試題分析:(1)①由旋轉(zhuǎn)性質(zhì)知AB=AD,∠BAD=60°即可得證;②由BA=BD、EA=ED根據(jù)中垂線性質(zhì)即可得證;③分別求出BF、EF的長即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根據(jù)三線合一可得CE⊥AB、AC=5、AH=3,繼而知CE=2CH=8、BE=5,即可得答案.
試題解析:(1)①∵△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD是等邊三角形;
②由①得△ABD是等邊三角形,
∴AB=BD,
∵△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△ADE,
∴AC=AE,BC=DE,
又∵AC=BC,
∴EA=ED,
∴點B、E在AD的中垂線上,
∴BE是AD的中垂線,
∵點F在BE的延長線上,
∴BF⊥AD, AF=DF;
③由②知BF⊥AD,AF=DF,
∴AF=DF=3,
∵AE=AC=5,
∴EF=4,
∵在等邊三角形ABD中,BF=ABsin∠BAF=6×=3,
∴BE=BF﹣EF=3﹣4;
(2)如圖所示,
∵∠DAG=∠ACB,∠DAE=∠BAC,
∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,
∴∠BAE=∠ABC,
∵AC=BC=AE,
∴∠BAC=∠ABC,
∴∠BAE=∠BAC,
∴AB⊥CE,且CH=HE=CE,
∵AC=BC,
∴AH=BH=AB=3,
則CE=2CH=8,BE=5,
∴BE+CE=13.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對乘積(﹣3)×(﹣3)×(﹣3)×(﹣3)記法正確的是( )
A. ﹣34B. (﹣3)4C. ﹣(+3)4D. ﹣(﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點P為第三象限內(nèi)拋物線上的一點,設(shè)△PAC的面積為S,求S的最大值;
(3)設(shè)拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】棗莊樂園設(shè)置了一個秋千場所,如圖所,秋千拉繩OB的長為3m,靜止時,踏板到地面距離BD的長為0.6m(踏板厚度忽略不計).為安全起見,樂園管理處規(guī)定:兒童的“安全高度”為hm,成人的“安全高度”為2m(計算結(jié)果精確到0.1m)
(1)當(dāng)擺繩OA與OB成45°夾角時,恰為兒童的安全高度,求h的長;
(2)某成人在玩秋千時,擺繩OC與OB的最大夾角為55°,問此人是否安全?(參考數(shù)據(jù):≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1: .小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=10cm,OC=6cm.F是線段OA上的動點,從點O出發(fā),以1cm/s的速度沿OA方向作勻速運(yùn)動,點Q在線段AB上.已知A,Q兩點間的距離是O,F(xiàn)兩點間距離的a倍.若用(a,t)表示經(jīng)過時間t(s)時,△OCF,△FAQ,△CBQ中有兩個三角形全等.請寫出(a,t)的所有可能情況 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用四舍五入法對0.02015(精確到千分位)取近似數(shù)是( )
A.0.02
B.0.020
C.0.0201
D.0.0202
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中,正確的是( 。
A.弦是直徑
B.長度相等的兩條弧是等弧
C.三點確定一個圓
D.三角形的外心不一定在三角形的外部
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com