【題目】如圖矩形ABCDAB=6,AD=4,點(diǎn)PAB上一點(diǎn),把矩形ABCD沿過(guò)P點(diǎn)的直線(xiàn)l折疊,使D點(diǎn)落在BC邊上的D′處,直線(xiàn)lCD邊交于Q點(diǎn).

(1)在圖(1)中利用無(wú)刻度的直尺和圓規(guī)作出直線(xiàn)l.(保留作圖痕跡,不寫(xiě)作法和理由)

(2)若PD′PD,①求線(xiàn)段AP的長(zhǎng)度;②求sinQD′D.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)根據(jù)題意作出圖形即可;

(2)由(1)知,PD=PD′,根據(jù)余角的性質(zhì)得到∠ADP=BPD′,根據(jù)全等三角形的性質(zhì)得到AD=PB=4,得到AP=2;根據(jù)勾股定理得到PD==2,CD′==2,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

(1)連接PD,以P為圓心,PD為半徑畫(huà)弧交BCD′,過(guò)PDD′的垂線(xiàn)交CDQ,

則直線(xiàn)PQ即為所求;

(2)由(1)知,PD=PD′,

PD′PD,

∴∠DPD′=90°,

∵∠A=90°,

∴∠ADP+APD=APD+BPD′=90°,

∴∠ADP=BPD′,

在△ADP與△BPD′中,,

∴△ADP≌△BPD′,

AD=PB=4,

PB=AB﹣AP=6﹣AP=4,

AP=2;

PD==2,

PD=PD′,PDPD′,

DD′=PD=2,

CD′==2,

sinQD′D=sinQDD′=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,并解答問(wèn)題.

材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.

解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)

∵對(duì)應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1

==+=x2+2+這樣,分式被拆分成了一個(gè)整式x2+2與一個(gè)分式的和.

解答:

(1)將分式 拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.

(2)試說(shuō)明的最小值為8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)在做課后習(xí)題時(shí),遇到這樣一道題:如圖所示,、兩村莊在一條河的兩岸,從村莊去村莊,需要在河上造一座橋,請(qǐng)問(wèn)橋造在何處從村莊去村莊的路徑最短?(假定河的兩岸是平行的直線(xiàn),橋與河垂直)

小強(qiáng)的解題思路,因?yàn)闃蚺c河岸垂直,線(xiàn)段是一個(gè)不變的量,將它平移到處得線(xiàn)段,總的路程是相等的,故要使最短,就是求點(diǎn)到點(diǎn)最短即可,所以點(diǎn)應(yīng)是的交點(diǎn).根據(jù)上述材料解答下列問(wèn)題:如圖所示:兩個(gè)駐軍地被兩條河隔開(kāi),上級(jí)安排緊急任務(wù),現(xiàn)要求一名士兵從地出發(fā)到地完成這項(xiàng)任務(wù),現(xiàn)要修兩座與河岸垂直的橋,問(wèn)橋建在何處使得這名士兵走的路徑最短?(假定河的兩岸是平行的直線(xiàn),河的寬為,河的寬為).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).

(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1,點(diǎn)A,B,C的對(duì)稱(chēng)點(diǎn)分別是點(diǎn)A1、B1、C1,直接寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo):A1   ),B1   ),C1   );

(2)畫(huà)出△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,連接C1C2,CC2,C1C,并直接寫(xiě)出△CC1C2的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,ABBC,直線(xiàn)l1、l2l3分別通過(guò)A、B、C三點(diǎn),且l1l2l3.若l1l2的距離為5,l2l3的距離為7,則Rt△ABC的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光華農(nóng)機(jī)租賃公司共有50臺(tái)聯(lián)合收割機(jī),其中甲型20臺(tái),乙型30臺(tái),先將這50臺(tái)聯(lián)合收割機(jī)派往A、B兩地區(qū)收割小麥,其中30臺(tái)派往A地區(qū),20臺(tái)派往B地區(qū).兩地區(qū)與該農(nóng)機(jī)租賃公司商定的每天的租賃價(jià)格見(jiàn)表:

每臺(tái)甲型收割機(jī)的租金

每臺(tái)乙型收割機(jī)的租金

A地區(qū)

1800

1600

B地區(qū)

1600

1200

(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y(元),求yx間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

(2)若使農(nóng)機(jī)租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金總額不低于79 600元,說(shuō)明有多少種分配方案,并將各種方案設(shè)計(jì)出來(lái);

(3)如果要使這50臺(tái)聯(lián)合收割機(jī)每天獲得的租金最高,請(qǐng)你為光華農(nóng)機(jī)租賃公司提一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)經(jīng)過(guò)點(diǎn)A,0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線(xiàn)的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線(xiàn)第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線(xiàn)段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將一副三角板按如圖所示的方式放置,則下列結(jié)論:①;②如果,則有;③如果,則有;④如果,必有;其中正確的有( )

A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

a 2 ≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式.例如:

x2 4x 5 x2 4x 4 1 x 22 1 ,

x 22 ≥0,

x 22 1 ≥1

x2 4x 5 ≥1.

試?yán)?/span>配方法解決下列問(wèn)題:

(1)填空: x2 4x 5 ( x )2 ;

(2)已知 x2 4x y2 2y 5 0 ,求 x y 的值;

(3)比較代數(shù)式 x2 12x 3 的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案