【題目】如圖,在等腰三角形ABC中,∠BAC=90°,AB=AC=2,DBC邊上的一個動點,(不與B、C重合)在AC邊上取一點E,使∠ADE=45°

1)求證:△ABD∽△DCE;

2)設(shè)BD=xAE=y

①求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

②求y的最小值.

【答案】1)見解析;(2)①,②1

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)得到∠B=∠C45°,根據(jù)三角形的外角性質(zhì)得到∠BAD=∠EDC,根據(jù)相似三角形的判定定理證明結(jié)論;

2根據(jù)相似三角形的性質(zhì)列出比例式,代入計算得到y關(guān)于x的函數(shù)關(guān)系式;

根據(jù)二次函數(shù)的性質(zhì)計算即可.

1)證明:∵∠BAC=90°,AB=AC

∴∠B=∠C=45°

∵∠ADC=∠B+∠1=45°+∠1,∠ADC=∠ADE+∠2=45°+∠2

∴∠1=∠2

∴△ABD∽△DCE

2)解:①∵△ABD∽△DCE,

∵AB=AC=2,BD=x,AE=y

,

② ∵,

y的最小值是1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)a≠0)的圖象與x軸交于AB兩點,與y軸交于C點,且對稱軸為x=1,點B坐標(biāo)為(﹣10).則下面的四個結(jié)論:①2a+b=0;②4a2bc0;③ac0;當(dāng)y0時,x<-1x2.其中正確的個數(shù)是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°AC=BC,P△ABC形內(nèi)一點,且∠APB=∠APC=135°

1)求證:△CPA∽△APB;

2)試求tan∠PCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】412日華為新出的型號為“P30 Pro”的手機在上海召開發(fā)布會,某華為手機專賣網(wǎng)店抓住商機,購進10000臺“P30 Pro”手機進行銷售,每臺的成本是4400元,在線同時向國內(nèi)、國外發(fā)售.第一個星期,國內(nèi)銷售每臺售價是5400元,共獲利100萬元,國外銷售也售出相同數(shù)量該款手機,但每臺成本增加400元,獲得的利潤卻是國內(nèi)的6倍.

1)求該店銷售該款華為手機第一個星期在國外的售價是多少元?

2)受中美貿(mào)易戰(zhàn)影響,第二個星期,國內(nèi)銷售每臺該款手機售價在第一個星期的基礎(chǔ)上降低m%,銷量上漲5m%;國外銷售每臺售價在第一個星期的基礎(chǔ)上上漲m%,并且在第二個星期將剩下的手機全部賣完,結(jié)果第二個星期國外的銷售總額比國內(nèi)的銷售總額多6993萬元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點EAD邊上運動,從點A出發(fā)向點D運動,到達D點停止運動.作射線CE,并將射線CE繞著點C逆時針旋轉(zhuǎn)45°,旋轉(zhuǎn)后的射線與AB邊交于點F,連接EF

1)依題意補全圖形;

2)猜想線段DE,EF,BF的數(shù)量關(guān)系并證明;

3)過點CCGEF,垂足為點G,若正方形ABCD的邊長是4,請直接寫出點G運動的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,點C為O上一點,AE和過點C的切線互相垂直,垂足為E,AE交O于點D,直線EC交AB的延長線于點P,連接AC,BC,PB:PC=1:2.

(1)求證:AC平分BAD;

(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;

(3)若AD=3,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某次斯諾克比賽中,白球位于點 A 處,在點 A 正北方向的點 B 處有一顆紅球,在點 A 正東方向 C 處有一顆黑球,在 BC 正中間的點 D 處有一顆籃球,其中點 C 在點 B 的南偏東 37°方向上,選手將白球沿正北方想推進 10cm 到達點 E 處時,測得點D 在點E 的北偏東45°方向上,求此時白球與紅球的距離有多遠?(參考數(shù)據(jù):sin37°≈,cos37°≈ ,tan37°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,BC8cm,射線AGBC,點E從點A出發(fā)沿射線AG1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC2cm/s的速度運動,設(shè)運動時間為ts).

1)連接EF,當(dāng)EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;

2)①當(dāng)t  時,以A、F、C、E為頂點的四邊形是平行四邊形(直接寫出結(jié)果);

②當(dāng)t  時,四邊形ACFE是菱形.

查看答案和解析>>

同步練習(xí)冊答案