精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在第1ABA1,B=40°,BAA1=∠BA1A,A1B上取一點C,延長AA1A2,使得在第2A1CA2A1CA2=∠A1 A2C;A2C上取一點D,延長A1A2A3使得在第3A2DA3,A2DA3=∠A2 A3D,按此做法進行下去,3個三角形中以A3為頂點的內角的度數為 ;n個三角形中以An為頂點的內角的度數為

【答案】17.5°@

【解析】試題分析:先根據等腰三角形的性質求出∠BA1A的度數,再根據三角形外角的性質及等腰三角形的性質分別求出∠CA2A1,DA3A2及∠EA4A3的度數,找出規(guī)律即可得出第n個三角形的以An為頂點的底角的度數.

解:∵在△ABA1中,∠B=40°,AB=A1B,

∴∠BA1A= (180°-40°)=70°,

A1A2=A1C,BA1A是△A1A2C的外角,

∴∠CA2A1BA1A×70°=35°;

同理可得,∠DA3A2=×70°=17.5°,EA4A3=×70°,

以此類推,第n個三角形的以An為頂點的底角的度數=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等腰ABC中,∠A=36°,ABC=ACB,1=2,3=4,BDCE交于點O,則圖中等腰三角形有( 。

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD是△ABC的中線,tanB= ,cosC= ,AC= .求:
(1)BC的長;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】勾股定理a2+b2=c2本身就是一個關于a,b,c的方程,滿足這個方程的正整數解(a,b,c)通常叫做勾股數組.畢達哥拉斯學派提出了一個構造勾股數組的公式,根據該公式可以構造出如下勾股數組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數組可以發(fā)現,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個勾股數組為_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數y=﹣ x2+bx+c的圖象經過B、C兩點.

(1)求該二次函數的解析式;
(2)結合函數的圖象探索:當y>0時x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線經過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=kx+1(k≠0)與雙曲線y= (x>0)相交于點P(1,m ).

(1)求k的值;
(2)若點Q與點P關于直線y=x成軸對稱,則點Q的坐標是Q();
(3)若過P、Q二點的拋物線與y軸的交點為N(0, ),求該拋物線的函數解析式,并求出拋物線的對稱軸方程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3幅乒乓球拍和2幅羽毛球拍共需204元.

(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;

(2)學校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

查看答案和解析>>

同步練習冊答案