【題目】已知,拋物線與x軸正半軸交于A、B兩點(A點在B點左邊),且AB=4.
(1)求k值;
(2)該拋物線與直線交于C、D兩點,求S△ACD;
(3)該拋物線上是否存在不同于A點的點P,使S△PCD=S△ACD?若存在,求出P點坐標.
(4)若該拋物線上有點P,使S△PCD=tS△ACD,拋物線上滿足條件的P點有2個,3個,4個時,分別直接寫出t的取值范圍.
【答案】(1)k=4(2) (3)存在符合條件的P點,且坐標為 P1(7,)、P2(,)、P3(,);(4)當0<t<時,P點有四個;當t=時,P點有三個;當t>時,P點有兩個
【解析】
(1)設A(x1,0)、B(x2,0),x1、x2>0,根據(jù)題意可得AB=|x1﹣x2|==4,而x1+x2,x1x2可由k表達出來,根據(jù)等量關系即可求得k的值;
(2)先聯(lián)立直線CD和拋物線的解析式求出C,D兩點的坐標,此時從圖可看出△ACD是一個不規(guī)則的三角形,所以可過A作直線AE∥y軸,交直線CD于E,那么線段AE為底,C,D的橫坐標差的絕對值為高即可得出△ACD的面積;
(3)設直線CD與y軸的交點為G,過點A作l1∥CD交y軸于H,取GH=GL,過L作l2∥CD交y軸于L,那么直線l1,l2到直線CD的距離等于點A到直線CD的距離,所以它們與拋物線的交點都是符合條件的P點;
(4)通過作圖可以發(fā)現(xiàn),在直線CD上方肯定有兩個P點,所以只考慮直線CD下方的P點數(shù),這就要抓住P點有三個或CD下方有一個P點的情況:P為平行于CD的直線與拋物線的唯一交點;若上述情況(P點有三個)中,t=,那么:P點有兩個時,t>;P點有四個時,0<t<.
(1)設A(x1,0)、B(x2,0),且x1<x2,x1、x2>0,
則:x1+x2=2k,x1x2=2(k+2)=2k+4,
∴AB=|x1﹣x2|==4,即:k2﹣2k﹣8=0,
解得:k1=﹣2,k2=4,
∵x1+x2>0,即k>0,
∴k=4;
(2)
由(1)知,拋物線的解析式:y=x2﹣4x+6,點A(2,0),B(6,0);
聯(lián)立直線CD和拋物線的解析式,有:
,
解得,,
即:C(1,),D(8,6),
如圖,過A作直線AE∥y軸,交直線CD于E,則E(2,3),AE=3,
S△ACD=AE×|xD﹣xC|=×3×7=;
(3)如右圖,設直線CD與y軸的交點為G,過點A作l1∥CD交y軸于H,取GH=GL,過L作l2∥CD交y軸于L;
設直線l1:y=x+b1,代入A(2,0),得:
×2+b1=0,b1=﹣1
即,直線l1:y=x﹣1,H(0,﹣1),GL=GH=3,L(0,5);
同上,可求得,直線l2:y=x+5;
聯(lián)立直線l1與拋物線的解析式,得:
,
解得,,
即:P1(7,);
聯(lián)立直線l2與拋物線的解析式,得:
,
解得,,
即:P2(,)、P3(,);
綜上,存在符合條件的P點,且坐標為 P1(7,)、P2(,)、P3(,);
(4)當滿足條件的P點有三個時,如右圖:
直線l3∥CD,且直線l3與拋物線只有唯一交點P;
設直線l3:y=x+b3,聯(lián)立拋物線的解析式有:
x+b3=x2﹣4x+6,即:x2﹣9x+12﹣2b3=0
△=81﹣4×(12﹣2b3)=0,解得:b3=﹣
即,直線l3:y=x﹣,P(,﹣);
過點P作直線PF∥y軸,交直線CD于F,則F(,)、PF=,
S△PCD=PF×|yD﹣yC|=××7=,t===,
綜上上面的計算結(jié)果和圖形來看:
當0<t<時,P點有四個;
當t=時,P點有三個;
當t>時,P點有兩個.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2011內(nèi)蒙古赤峰,7,3分)早晨,小張去公園晨練,下圖是他離家的距離y(千
米)與時間t(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法正確的是 ( )
A.小張去時所用的時間多于回家所用的時間B.小張在公園鍛煉了20分鐘
C.小張去時的速度大于回家的速度 D.小張去時走上坡路,回家時走下坡路
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在軸的負半軸、軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉(zhuǎn),使點B落在軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x<0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tan∠DOE=,,則BN的長為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,四邊形ABCD為正方形,點E,F分別在AB與BC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).
(1)如圖②,在四邊形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,點E,F分別在AB與BC上,且∠EDF=60°.猜想AE,CF與EF之間的數(shù)量關系,并證明你的猜想;
(2)如圖③,在四邊形ABCD中,∠ADC=2α,DA=DC,∠DAB與∠BCD互補,點E,F分別在AB與BC上,且∠EDF=α,請直接寫出AE,CF與EF之間的數(shù)量關系,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28 m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=x m.若在P處有一棵樹與墻CD,AD的距離分別是15 m和6 m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),則花園面積S的最大值為( )
A. 196 B. 195 C. 132 D. 14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D 為∠BAC 的外角平分線上一點并且滿足 BD=CD, 過 D 作 DE⊥AC 于 E,DF⊥AB 交 BA 的延長線于 F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com